

Continuous Pattern Detection on Streaming Data: Present and Future

SUTANAY CHOUDHURY

JOINT WORK WITH: KHUSHBU AGARWAL, SHERMAN BEUS, DANIEL DOHNALEK, GEORGE CHIN

Workshop on "Graphs and Security", Microsoft BlueHat, Redmond WA, 2018

Introduction and Outline

- Part 1: What we have now (StreamWorks)
 - Stream based reasoning problem definition and algorithms
 - Cyber use cases for streaming analytics
 - Demonstration
- Part 2: The future for Autonomous Cyber systems
 - Extending stream-based reasoning towards autonomous operation
 - Conceptualizing tasks for benchmarking

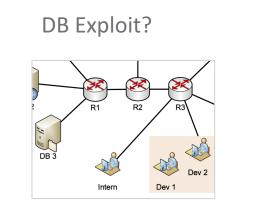
Asking a Different Question: Tell me when ...

Pacific Northwest NATIONAL LABORATORY

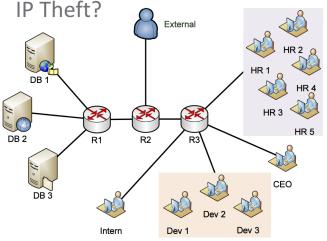
Proudly Operated by Battelle Since 1965

Continuous monitoring of streaming data

- Instead of traditional "find me all things that happened in past 24 hours" move to a "tell me when X happens" paradigm
- Example: Standard feature from a stock brokerage "Tell me when MSFT goes to \$150 and more than 50 million shares were traded"
- Cyber equivalent: "Tell me when a chain of 3 logins are detected with increasing privileges?"



Project DB compromised by lateral movement



Backdoor opens to CEO's machine when he accesses Project DB

Malware?

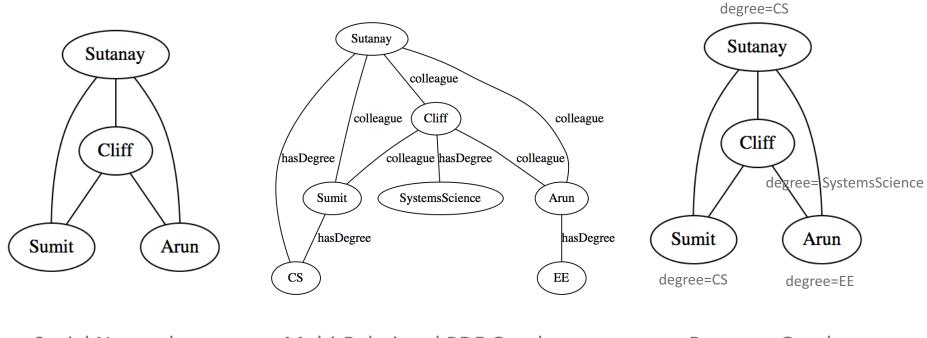
Malware installed on developer's workstation

Specific Problem Definitions

- Find the pattern from event or alert stream
 - Who is involved as source (outside) and target (inside)?
 - What type of interaction is involved?
 - What type of kill-chain behavior is represented by the pattern?
- Given (source, target and kill-chain behavior), project possible instances of the kill-chain
 - Use the Knowledge Graph to generate high probability pathways with explanations
- Interfacing with the Human Expert
 - Summarize contextual patterns to the human expert
 - Learn patterns of reviewed alerts

Property Graphs

What are property graphs, and how are they different from other representations?



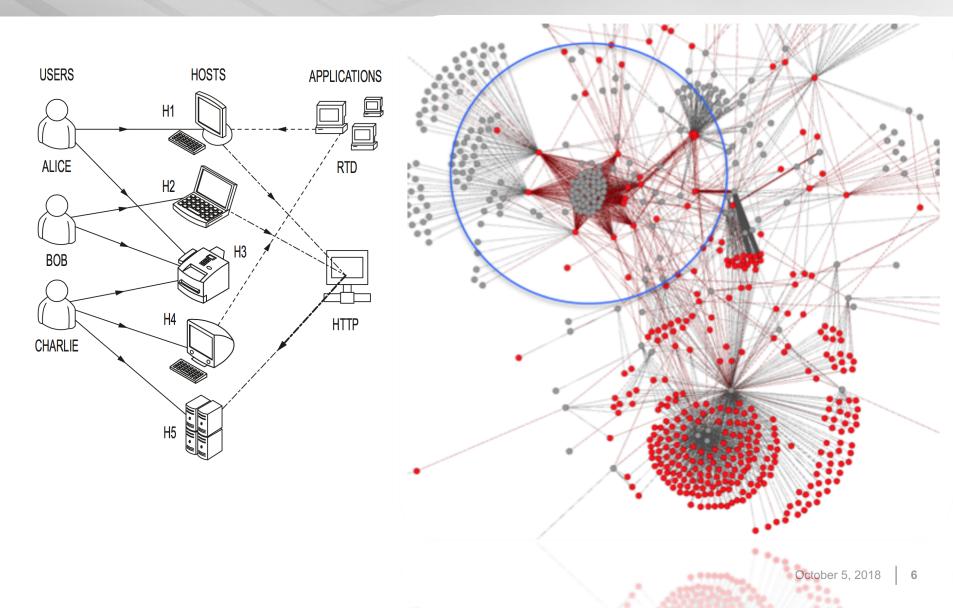
Social Networks

Multi-Relational RDF Graphs

Property Graphs

Example Graph Models for Cyber Data

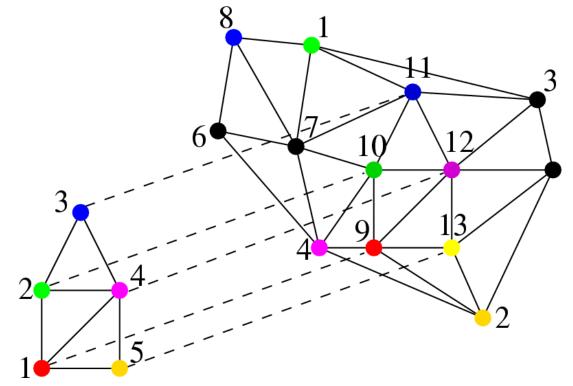
Proudly Operated by Battelle Since 1965



Subgraph Pattern Matching

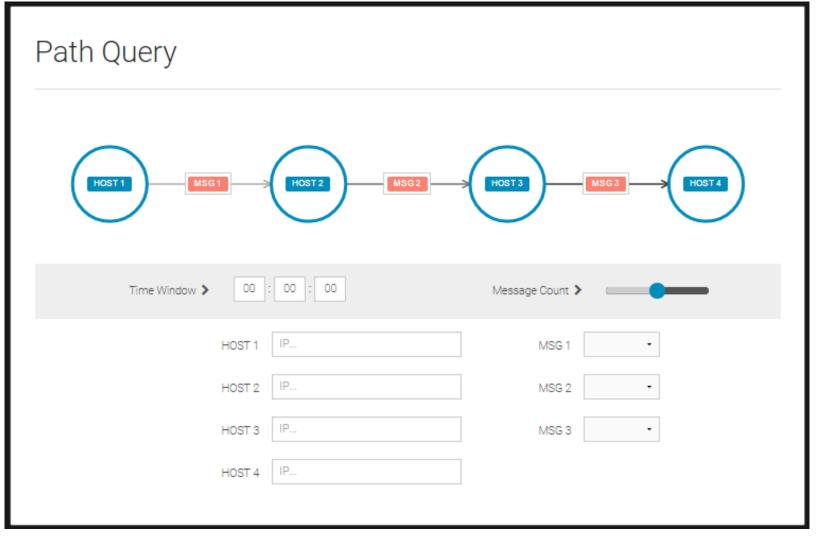
Proudly Operated by Battelle Since 1965

- Query and database are both represented as graphs
- Report embedding of query pattern instances in a dynamic graph
- Pattern Queries in Action
 - "Tell me when a chain of 3 logins are detected with increasing privileges?"



StreamWorks Demonstration – Path Query

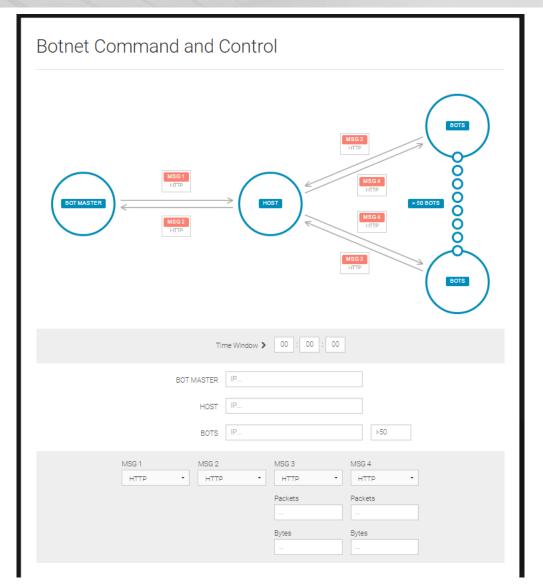
Proudby Oberated by Rattelle Since 1965



Joslyn, C., Choudhury, S., Haglin, D., Howe, B., Nickless, B., & Olsen, B. (2013, June). Massive scale cyber traffic analysis: a driver for graph database research. In First International Workshop on Graph Data Management Experiences and Systems (p. 3). ACM. 8

StreamWorks Demonstration – Botnet Control and Command

Proudby Oberated by Rattelle Since 1065



StreamWorks Demonstration – Exfiltration

Proudly Oberated by Rattelle Since 1065

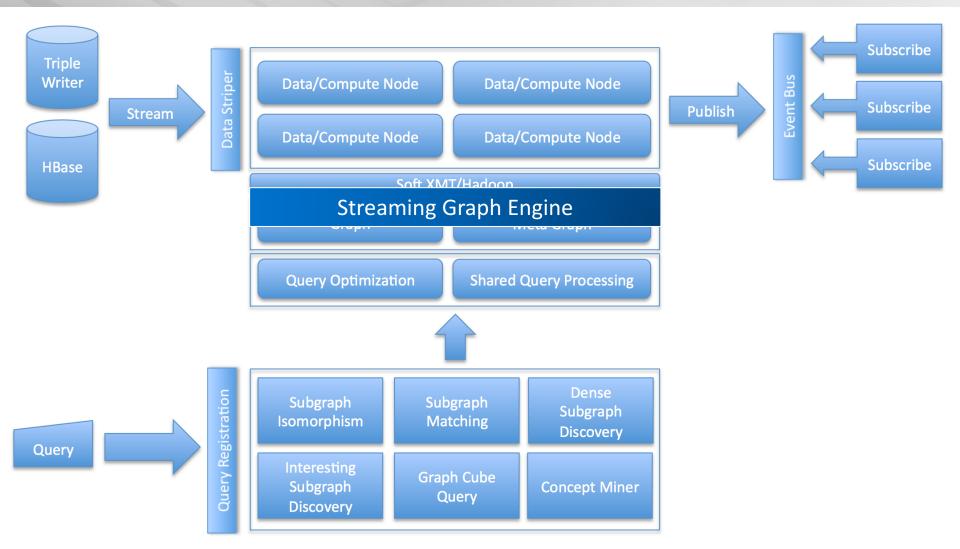
Exfiltration	
ATTACKER	
Time Wir	dow > 00 : 00 : 00
ATTACKER IP	
HOST IP	
DROPBOX IP	
MSG 1 MSG 2	MSG 3
	Packets
	Bytes
	Count

StreamWorks Demonstration – Watering Hole

Proudly Oberated by Rattelle Since 1065

Watering Hole	
HIGHT HITP HITP HITP HITP HITP HITP HITP OO OO OO OO OO OO OO OO OO OO OO OO OO	
Time Window > 00 : 00 : 00	
HOSTS IP >50	
BAIT IP	
CONTROLLER IP	
MSG 1 MSG 2 MSG 3 HTTP • HTTP • HTTP •	

The StreamWorks Architecture

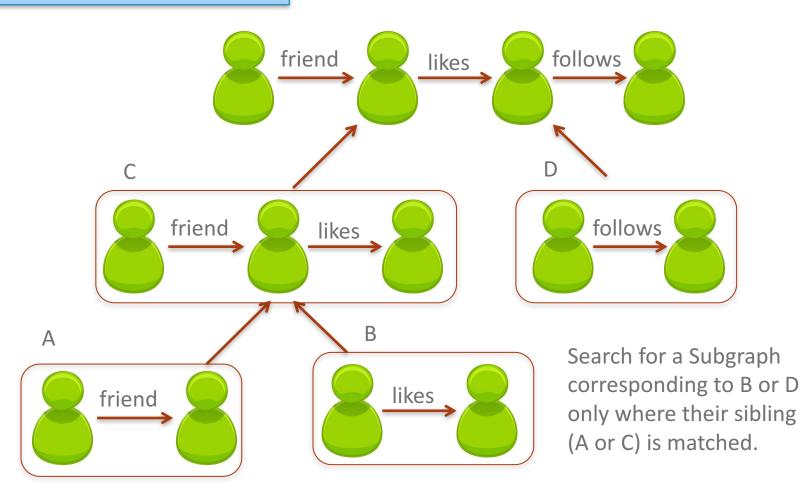


Choudhury, S., Holder, L., Chin, G., Ray, A., Beus, S., & Feo, J. (2013, June). Streamworks: a system for dynamic graph search. SIGMOD.

Dynamic Graph Query Optimization

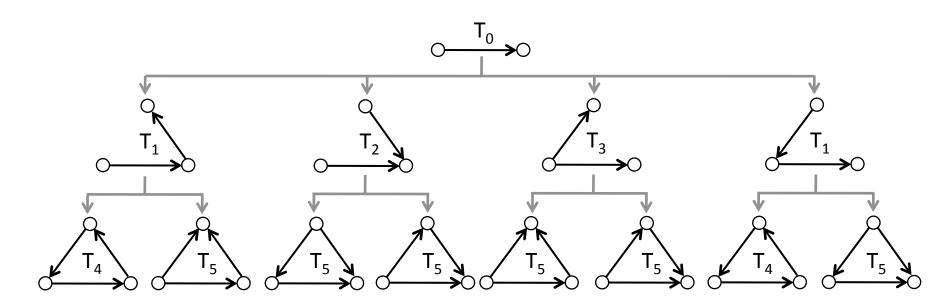
Proudly Oberated by Rattelle Since 1965

Assume selectivity order sel(A) > sel(B) > sel(C) > sel (D)



Selectivity Estimation

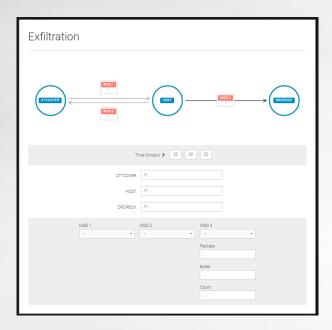
- Selectivity. We compute the selectivity of all *primitives* by counting their frequencies
- Frequency counting is expensive beyond 2-edge subgraphs



Choudhury, S., Holder, L., Chin, G., Agarwal, K., & Feo, J. (2015). A selectivity based approach to continuous pattern detection in streaming graphs. *EDBT*.

Demo: StreamWorks

Visual Querying: Real users should not need to learn a new query language to use the system.

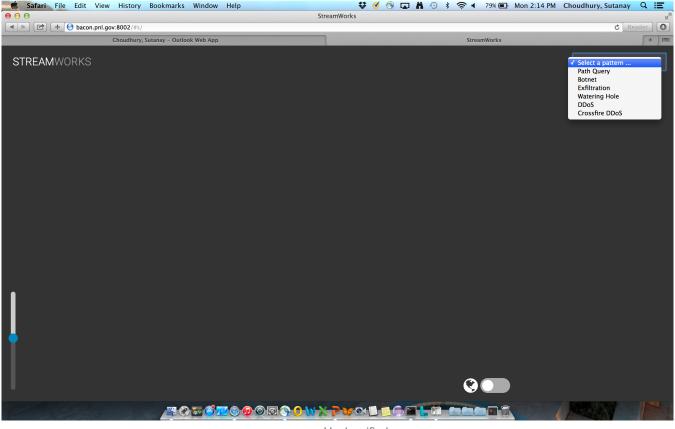


SELECT ?control ?target ?dropbox ?xfil WHERE {
Control Message from C2 to target
?control ?ctrlmsg ?target .
?ctrlmsg :FTIME ?ftime1 .
?ctrlmsg :DPKTS ?pkts1 .
?ctrlmsg :DOCTETS ?octets1 .
FILTER (?pkts1 < 3 && ?octets1 < 300)</pre>

xFil did NOT happen from target in previous # hour (target usually does not send lots of # data to external hosts). { SELECT ?target { SELECT ?target (SUM(?octets) as ?outRate) WHERE { ?target ?flow ?dst . ?flow :DOCTETS ?octets . ?flow :DOCTETS ?octets . ?flow :STIME ?stime . FILTER (?stime < ?stime1 &&?stime1 - ?stime < 3600) } GROUP BY ?target ?dst } GROUP BY ?target HAVING (MAX(?outRate) < 100000) }

Use in 3 simple steps – No need to learn SQL/SPARQL

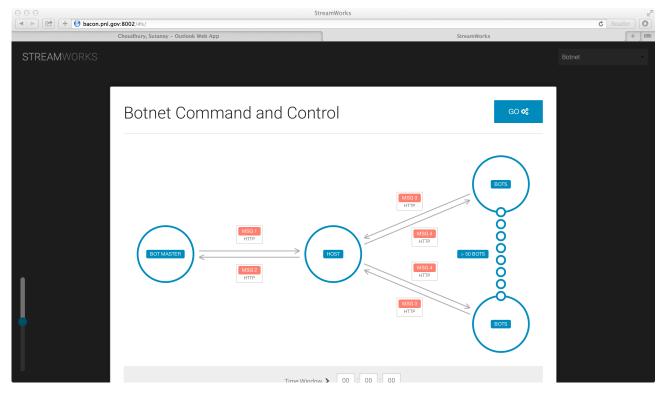
- We provide templates to users to specify questions and auto-generate queries
- **Step 1:** Choose a query



Unclassified

Build your query visually

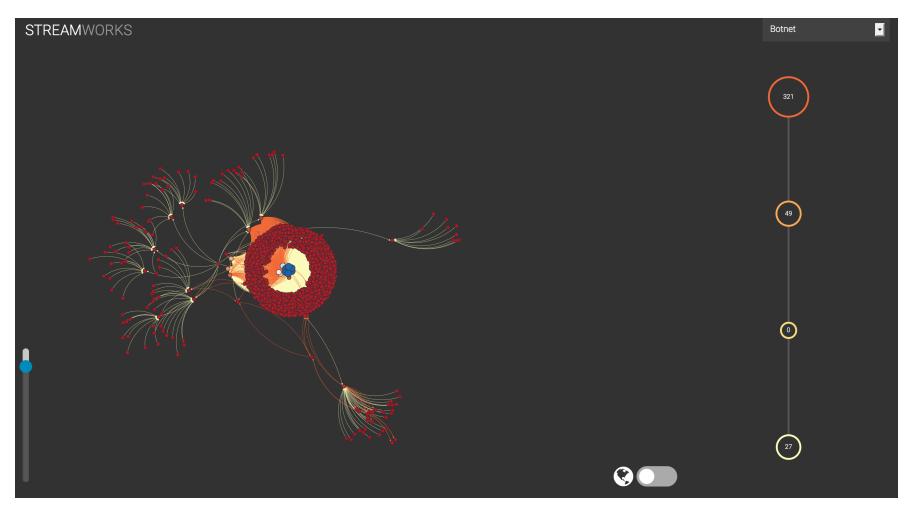
- Step 2: Specify constraints, choose properties to specialize the queries and hit Go!
- This notifies the Apache Spark cluster to register the query and start pattern matching on the stream



Visualize the results

Proudly Oberated by Rattelle Since 1065

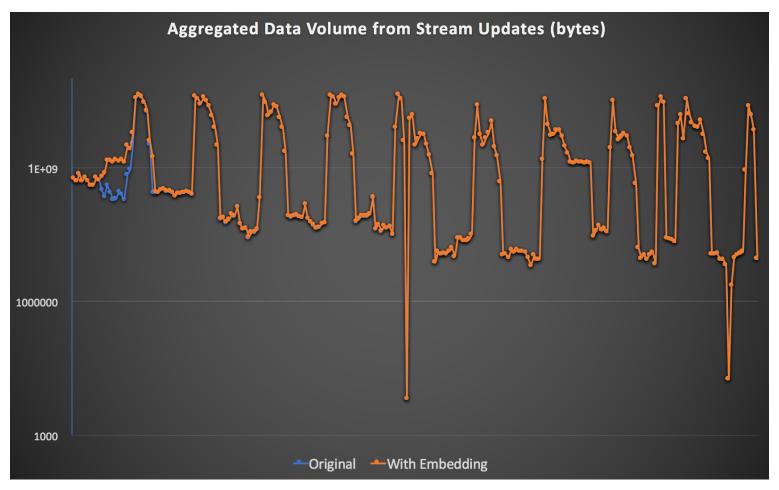
- Step 3: When matches are found in the stream, results are send back to the web server for visualization
- Showing a botnet match. Color gradient used to indicate confidence.



Finding the Needle in a Haystack

Proudly Operated by Battelle Since 1965

Embedded multiple embeddings of exfiltration into a large-scale dataset



Exfiltration

Proudby Oberated by Rattelle Since 1065

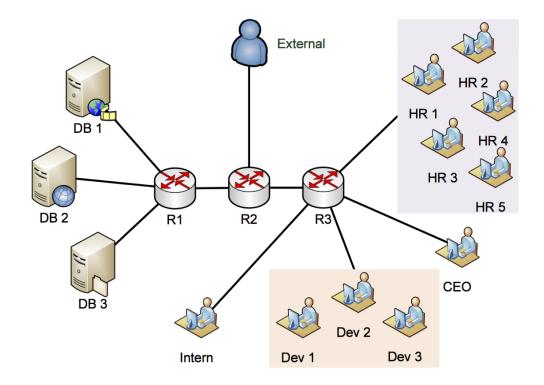
Exfiltration	
ATTACKER MISC 2 7	
Time Wa	00 : 00 : 00 × wobr
ATTACKER IP	
HOST IP	
DROPBOX IP	
MSG 1 MSG 2	
* *	* Packets
	Bytes
	Count

Unclassified

Explaining Top Matches

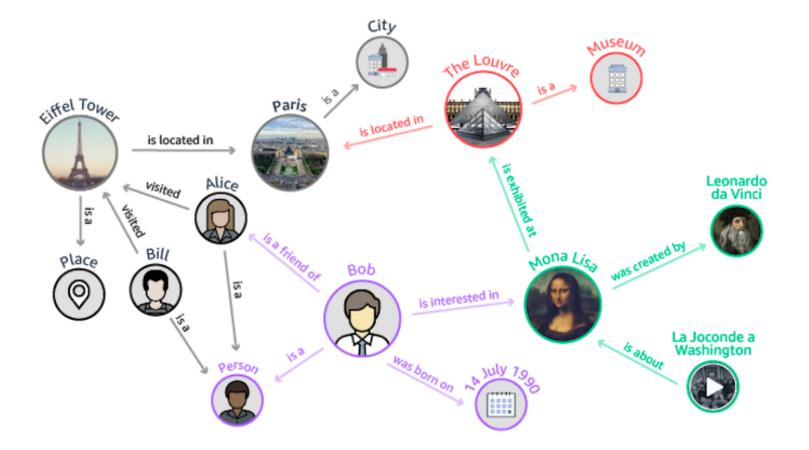
Troudily Operated by Buildie Binee

- Finding a pattern is the first step. The context is more important.
 - Given an alert on host Dev1, provide explanations such as "Dev1 frequent connects to service DB2. CE0's machine frequently connects to DB2"



Introducing the Knowledge Graph

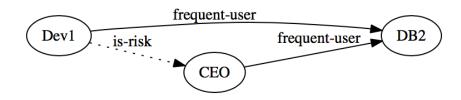
Proudly Operated by Battelle Since 1965

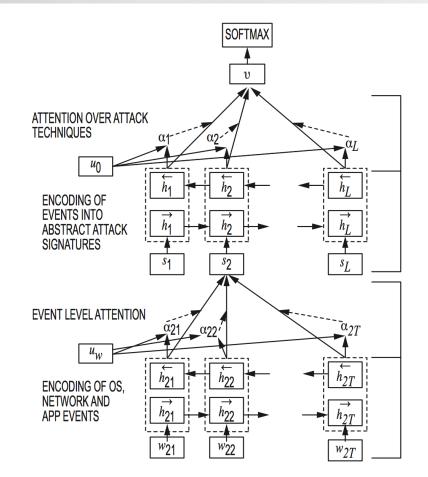


Building Knowledge Graph for Cyber

Proudly Operated by Battelle Since 1965

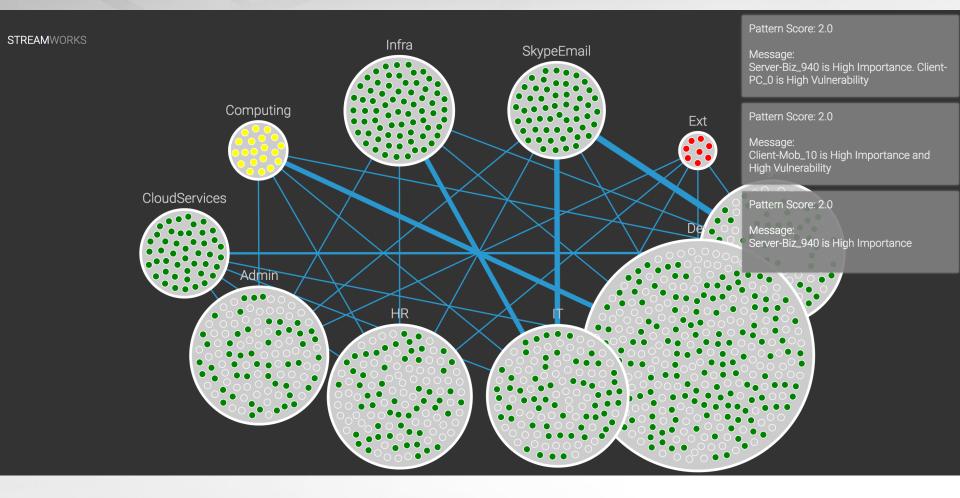
- A Knowledge Graph that learns and stores behavioral summary about entities of interest
 - Role mining: grouping systems based on their functional roles
 - Rules: Relational constraint using properties of entities
 - Event prediction models: recurrent neural network based approaches to score an event





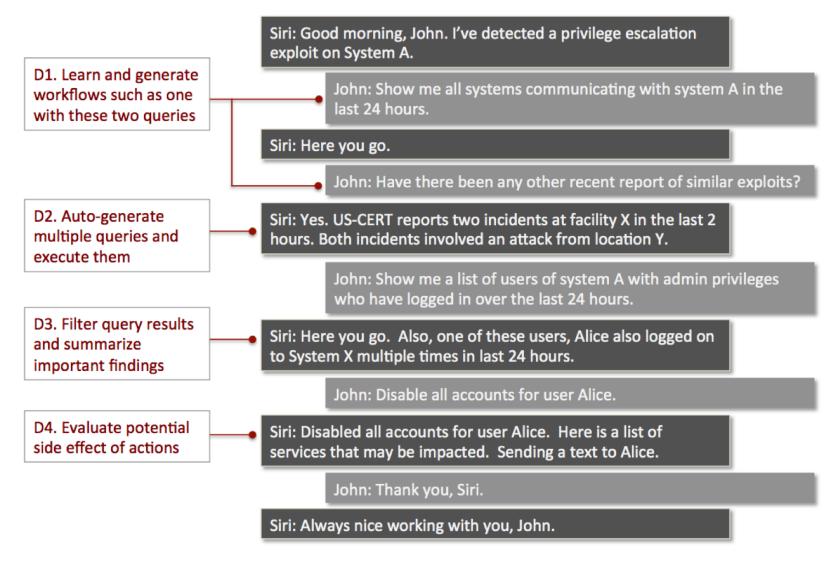
Choudhury, S., Agarwal, K., Purohit, S., Zhang, B., Pirrung, M., Smith, W., & Thomas, M. (2017, April). Nous: Construction and querying of dynamic knowledge graphs. In *Data Engineering (ICDE), 2017 IEEE 33rd International* 24 *Conference on* (pp. 1563-1565). IEEE.

Demo: Explaining Top Matches



The Future: Towards a Passive AI for Cyber

Proudly Oberated by Rattelle Since 1065



Unclassified

How do we evaluate AI systems operating in a streaming environment?

Proudly Operated by Battelle Since 1965

- Develop a benchmark of tasks and dataset
- Proposing 5 "Cyber IQ" levels representing progressive levels of complexity
- IQ level 1: Find Anomalous Events of Interest
 - Can perform basic tasks such as detecting unusual events (VPN logins from multiple locations for same user)
- IQ level 2: Learn from human experts and build its Knowledge Graph
 - Observe data and generate questions for the human expert
 - Example: Which systems/services have more strategic importance?
 - What does action X accomplish? Which systems does this affect?
 - Don't ask, but observe. Try to observe the impact/success of action X in steering the system back to normalcy.

Passive AI (level 3)

IQ level 3: Work with human experts

- Start sending recommendations "In past, we saw case X on days A, B and C, and you took actions P and Q. Q had higher success rate."
- Explanations: "You took actions P and Q in situations like X. However, this time we are also seeing strong presence of features M and N that were not present in X before."

Autopilot (Level 4 and 5)

Autopilot (Level 4)

- Develop a conservative "autopilot mode"
- Generate reports providing reasoning for every action chosen
- It has to be better than shutting down everything in the event of an anomaly, but smartly using tools such as throttling traffic to certain VMs or isolating them
- Meta-System: A system to audit the primary
 - Understand when human and machines underperform
 - Compare votes of the human expert and that of the machine
 - Inject purposeful disruptions to test robustness against unseen problems

Summary

A tale of two graphs

- A fast moving graph Dynamic graph updated in near real-time and maintained as sliding window in time
- A slowly changing graph The Knowledge graph reflects what we learn about behavioral patterns in the data

Applications: Build complex systems with the graphs as their memory

- **Today**: Continuously maintain the memory, search and serve top-k queries with summarization
- **Future**: Build complex systems using graphs algorithms and machinelearning techniques as tools that evolve the memory and operate on it

Proudly Operated by Battelle Since 1965

Sutanay Choudhury

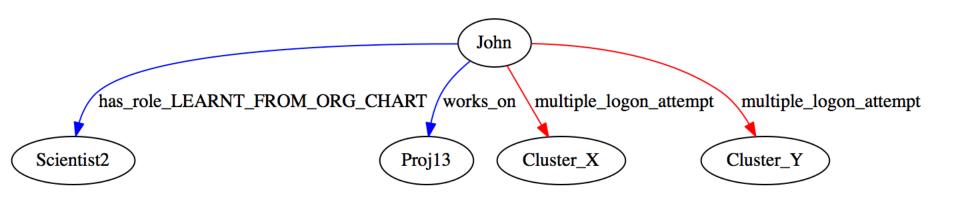
Data Scientist sutanay.choudhury@pnnl.gov

Protected Information | Proprietary Information

Backup

- Let's take a very simple action (John, an employee working on a DOE project launches a job on a cluster) and try to categorize that as normal or unusual
- Classifying someone as an Insider Threat builds on multiple indicators. Categorization such as above is a basic building block in that process

What do we know about John?

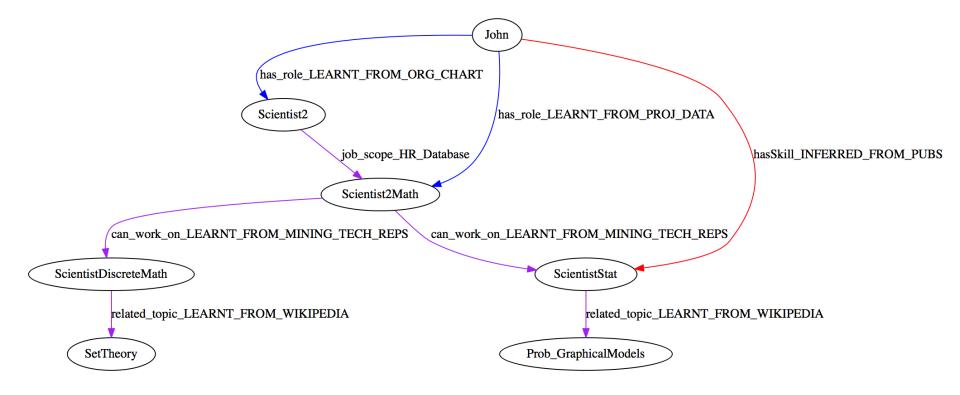


Red facts are summaries obtained from streaming data Blue facts are static information

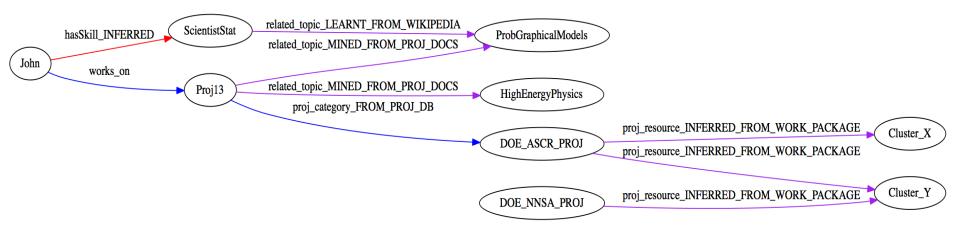
What does John do in PNNL?

Proudly Operated by Battelle Since 1965

Let's expand by adding data from HR database and project publications



Tell me more about his Projects



What do we know about the specific network activity?

