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Key Takeaways

• Which ML method you want to use for designing a new molecule?  What are 
the trade-offs between various methods?
§ More specifically, Variational Autoencoders vs. Deep Reinforcement Learning

• If the target molecule structures exhibit strong structural/geometric properties, 
how do we incorporate that knowledge into the ML methods?
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Molecule Design problem

How do we automate the design of chemical 
structures that have interesting properties?
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Why is this hard?

• If we were to compose a molecule with n functional groups from a library of N 
functional groups, the size of the search space would be on the order of 
permutations (N, r):
§ N=100, r=10, search space: 6.28 * 10^19
§ N=100, r=20, search space: 1.31 * 10^39
§ N=200, r=10, search space: 8.14 * 10^22
§ N=200, r=20, search space: 3.92 * 10^45

• Our goal with machine learning is to avoid the exhaustive enumeration of the 
search space.
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Variational Autoencoder vs Deep Reinforcement 
Learning
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Pros and Cons

If you want a molecule that is close to ones 
existing in your database, use VAE.

One of our top molecules (generated by JT-VAE) 
was a match to a widely researched COVID-19 

therapeutic.

Deep RL is a promising approach to find novel 
candidates that we will miss if just ”searching 

where the light is.”



HydroNet: A ML Benchmark for Modeling 
Intermolecular Interactions
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https://exalearn.github.io/hydronet [3]

https://exalearn.github.io/hydronet
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Goal: Learning a model to generate low energy 
water clusters



Deep RL Formulation

At

Environment represented via 
Attributed Graphs

Design Agent

GraphEnv

St St+1

Rt+1Rt

State represented via Attributed Graph and 
graph-theoretic chemical descriptors

Reward
estimated via 
chemical 
descriptors 
and/or graph 
neural 
network based 
surrogate 
models



State space exploration



Graph-theoretic Reward Components

Path Measures

Diameter = 3
Avg Shortest Path Length = 1.89

Geometric Cycles

0 Trimers 4 Tetramers
2 Pentamers 3 Hexamers 

0 Trimers 0 Tetramers
1 Pentamers 0 Hexamers 

Degree
(H2O)9 Diameter = 6

Avg Shortest Path Length = 2.75



r0 = 2.00 rs = 1.42

rs = 1.47

rs = 1.29

rs = 1.43

rs = 3.00
E = -94.67 kcal/mol

rs = 2.60
E = -91.50 kcal/molwhere Ds is the degree distribution at step s

𝑟! = 𝐸 𝐷! − 𝑣𝑎𝑟(𝐷!)
Step-wise reward rs:
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Addition of Graph Properties to Reward



Structural measure preserving Molecule 
Generation

• The distribution of structural motifs evolve with scale

5% lowest-energy clustersall clusters



• Provide data with graph and 
coordinates information

• Provide pre-trained model 
for energy prediction using 
both graph neural networks 
and coordinate based 
convolutional neural 
network[1]

• Provide tools for validating 
quality of generated 
molecules
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HydroNet: Multi-representation Benchmark
Geometry: coordinates

(x1,y1,z1)

(x3,y3,z3)

(x2,y2,z2)
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