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* Which ML method you want to use for designing a new molecule? What are
the trade-offs between various methods?

» More specifically, Variational Autoencoders vs. Deep Reinforcement Learning

* If the target molecule structures exhibit strong structural/geometric properties,
how do we incorporate that knowledge into the ML methods?
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* If we were to compose a molecule with n functional groups from a library of N
functional groups, the size of the search space would be on the order of
permutations (N, r):

= N=100, r=10, search space: 6.28 * 10*9
= N=100, r=20, search space: 1.31 * 10739
= N=200, r=10, search space: 8.14 * 10722
= N=200, r=20, search space: 3.92 * 10745

« Our goal with machine learning is to avoid the exhaustive enumeration of the
search space.
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HydroNet: A ML Benchmark for Modeling
Intermolecular Interactions
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https://exalearn.github.io/hydronet [3]
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% Goal: Learning a model to generate low energy
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State represented via Attributed Graph and
graph-theoretic chemical descriptors

Reward
estimated via
chemical
descriptors
and/or graph
neural
network based
surrogate
models
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Environment represented via
Attributed Graphs
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rs=1.47

r, = 3.00
E =-94.67 kcal/mol

Step-wise reward r:

r. = E(Dg) — \/var(Dy) rs = 2.60
E =-91.50 kcal/mol

where Dy is the degree distribution at step s
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preserving Molecule

 The distribution of structural motifs evolve with scale
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Geometry: coordinates 9
. . Ord_Energy  -15.9416428
e Provide data with graph and ' 0  25.3875809 2.28446364 8.01933861
: _ : (x ) H  24.6864510 2.11461496 7.36908007
coordinates information WK Yir 2 H  26.1070786 1.70453322 7.77935553
N 0  22.9643402 1.68695939 6.75715494
: : b H  22.7494984 1.67431045 7.70416498
 Provide F)rEB-trEH|r1EBCj model (X3, Y3/ 21) H  22.2382431 2.13693213 6.33168697
o : 0  23.0780773 1.86950338 9.54773140
for energy predIC’[Ion usSing """ (x.,v,,z,) H  22.9238548 2.46375370 10.2781725
2r¥2rEEl g 23.9850082 2.04813766 9.25002480

both graph neural networks
and coordinate based
convolutional neural
network([1]

* Provide tools for validating
quality of generated
molecules

"atom":
"coords"™:

"n_atom™: 9,
[01 1! l’ O! l! l, O’ l! l]’
[[25.3875809, 2.28446364, 8.01933861],

"z": [8, 1, 1, 8, 1, 1, 8, 1, 1],
"n_water"™: 3,

[24.686451, 2.11461496, 7.36908007],
[26.1070786,
[22.9643402,
[22.7494984,
[22.2382431,
[23.0780773,
[22.9238548,
[23.9850082,

"energy": -15.9416428

1.70453322,
1.68695939,
1.67431045,
2.13693213,
1.86950338,

2.4637537,

2.04813766,
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10.
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.779355531],
.75715494],
7.70416498],
331686971,

5477314],
2781725],

2500248]],
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