ExalLearn-Design: Computational Design at Exas
with Deep Reinforcement Learning on GraphS\

EXASCALE
) COMPUTING
\ PROJECT
L

Sutanay Choudhury (PNNL), Logan Ward (ANL), Jenna Pope (PNNL), Malachi
Schram (PNNL), Joseph Heindel (University of Washington), Sotiris Xantheas

(PNNL), Marcus Schwarting (ANL), Yinzhi Huang (PNNL), Sayan Ghosh (PNNL), Jim
Ang (PNNL), lan Foster (ANL)

T VA [=35

Office of
M’\"uﬂ:lﬁ“ﬂ

%’5 EN ERGY Science

Design: Expanding Computational Design to the ExaScale

Electrolytes Better Batteries
Generate Simulate
k\‘ Designs Designs %‘
Existing Optimized s
FanN Solutions Systems 122 '%
Generate Simulate Better Science

Water Clusters

! Designs Designs

I
.____-————---'1Exascale HPCT

Today: Humans steer HPC, HPC performs simulations Needed Solution: HPC steering itself

Why Exascale?

Large computational cost (>10' molecules in GDB17)
= Tight coupling between heterogeneous computations

HPC Steering HPC Requires Extensive Machine Learning

Generative Models

Existing Create Simulate Optimized
Solutions Designs Designs Designs

S S ExalLearn
core elec .
Designs ey | _besign App

-

Supervised Learning Active Learning

Motivation

How do we automate the design of chemical
structures that have interesting properties?

1M

1-bond adv \Zidds 1-remove
(/(\/‘:>(

S am
Highest ‘ 1-add

energy é\ K;)
Lowest " 3)‘ —

energy g ‘/3 rotation I‘j__/‘y
v

Our approach: Deep Reinforcement Learning for Graphs

database of 135 kilo molecules. Scientific Data, 6(1), pp.1-8.

reduce reduce

symmetw% symmetry

lengthen ‘ v |Iengthen

with ethyl Benzene ith ethyl k
D6h

*a%ad

¢ C2h
replace with | retain retain | replace with
bromine atom | Symmetry symmetry |bromine atom
C3h - ;,

retain Iengthen
symmetry with methyl

o

Right figure from: Liang, J., Xu, Y., Liu, R. and Zhu, X., 2019. QM-sym, a symmetrized quantum chemistry

Tutorial Objectives

« Formulating Design as a Graph
Reinforcement Learning Problem

« Training Graph Surrogate Models at Extreme Scale
« Developing Reward Functions via Graph-Theoretic

Chemical Descriptors 3 ﬁ
1-bond adwi ~ ¢
=
¢ b
S St Sea¥
Highest
energy 9 \

Lowest Fe \<_

energy fjl ¥ rotation

symmetry

lengthen
with ethyl

=

bE
LR

replace W|th

retain

reduce reduce
symmetry
lengthen

Benzene | ith ethyl
D6h

retain l replace with

bromine atom symmetry symmetry | bromine atom

A

-

\

5‘“! 3
A

Faees

retain Iengthen
symmetry with methyl

2-adds, 1-remove M

C2h

k

Formulating Design as a
Graph Reinforcement
Learning Problem

—
S \
\ EXASCALE
COMPUTING
\ PROJECT
g

Key Goals: Scalability and Interpretability

Scalability: handle combinatorial explosion in the
state-search space a3

{ (! J
| b o ST
¢
4

Combinatorial game tree picture courtesy: Google’s DeepMind

Interpretability: generate design pathways that
P N scientists can reason about

How will we find our Target Structures?

Algorithm 1 A search algorithm to find a target molecular struc-
ture starting from an initial structure G:r’l’; ; using a reinforcement

learning model Mg and branching factor b.

1: procedure SEARCH(G;’;;; ,b, MR1)
2 INIT(results, 0)

3 INIT(P,4pnq> EXPLORE-NEXT(MRL, [GI1], b)) Learning Mg, is the
4: while size(P.4,4) > 0 do > f RL .

.. pathway = pop(P,) ocus on this tutorial
6

7

8

9

N_.and = EXPLORE-NEXT(Mg, pathway, b)
fOl‘ all Gnew € Ncand dO

Phew = pathway U {Gpew}

if MATCH-TARGET(Gyevv) then

10: results = results U {Gpew}
11: else
12: PUSH(P, 4,45 Pnew)

13: RETURN results
14: end procedure

o \
\ EXASCALE
) COMPUTING
\ PROJECT

Learning My,

Recollect key RL concepts from Control
presentation

Extends with graph-based representation
learning methods and algorithms

State represented via Attributed Graph

and graph-theoretic chemical descriptors
/

St

[Design Agent

~N

-

P

J Rt

N o e e e e o e me mm Em mm e o o o

\ 4 N
G)
-5
Q)
i)
>
[Tl
5
<

- e fm s = s = = - - o o o o o oy -

via Attributed Graphs

Reward estimated
via chemical
descriptors and/or
graph neural
network based
surrogate models

—— —— —

Introducing the ML Workflow to Computational Scientists

1. Describe the graph-based Gonerate mow
data representation structure

I e —l ExalLearn
L Design App

2. Show how to train a surrogate
model for graph structured Initial
data Design

3. Show how to design graph

based chemical descriptors to Optimized
encode the state and steer L Design
rewards - = = =0 =
Calculate property Assign reward
with surrogate model relative to target goal

Developing Reward
Functions via
Graph-Theoretic
Chemical
Descriptors

Designing domain-aware reward functions

How do you go from state S; (graph) to reward R, (scalar)?

oo T mm mm mm o e o o

gl / ? I St+1 \ :
[Design Agent :
E J E : Rt+1 i
oAl :
:\\ | GraphEnv]— ,:

N e e e o e o Em Em e o o e Ee Em Em O o o o e EE EE e O o Em Em o e e

Test Case: Low-lying structures of water clusters

« Test database contains ~M water
clusters with 3—30 molecules, all =3
lying within 5 kcal/mol of the X
putative minimum for each cluster s
size

e Database generated through Monte :lff;}(
Carlo-type potential energy search "=*°

— Many repeated calculations #jf;
~ Many local minima missed tr
n=21

b=

23

" a -d A
S & o
s B g N “':: Jfﬁi
n=6 n=7 n=38
1 3
X7 Py d {
ey A PPy O 2
AL ‘.—r\.,(X _}y
n=12 n=13 n=14
}&‘f o 2 2 N
X J 1Y it
‘O <> NN 4
) % i > F
[SO Y ﬂ_‘/ \{
n=138 n=19 n=20
A > P A
L% CRMA Y
5 7
~ T <Py
el G/ Y
:’-/ A5 ;/
n=24 n=25

A. Rakshit, P. Bandyapadhyay, J.P. Heindel, S.S. Xantheas. Atlas of putative minima and low-
lying energy networks of water clusters n = 3 — 25. J. Chem. Phys. 151, 214307 (2019).

Test Case: (H,0); — (H,0)4,

E =-94.6707 kcal/mol

Formalizing the Structure by Degrees

H w o)} ~

Count

w

o = N

1 2 3
Node Degree

4.0

3.5

3.0

2.5

Count

1.5

1.0

0.5

0.0+

3
Node Degree

Count
o = N w s U O N

3

Node Degree

r.=3.00
E =-94.67 kcal/mol

Step-wise reward r:

1y = E(Ds) — y/var(Ds) 9r§ ngo I/mol
= -91. cal/mo

where D, is the degree distribution at step s. As shown for the final
steps, the highest reward corresponds to the lowest energy structure.

e rs = 2.60
rs =2.20 ry = 2.22 E=-91.50 kcal/mol

Increasing the reward at each step does

not lead to the lowest-energy cluster! il N

Tuning the Reward though Additional Metrics

 The reward can be tuned to produce specific structures

 Cluster properties are non-linear as the number of water molecules

Increases

201

Number of Cycles

151

10

"2 Trimers all clusters
Tetramers

Pentamers
Hexamers

| 5% lowest-energy clusters

& %
‘ %
+++++++ !)2
] ‘_’) /.-,.- /o'o o/—o-o-o-o-ofo--o--ﬂ/o | N2

20 25 30
Cluster Size

5 10 15 20 25 30
Cluster Size

Graph-theoretic Reward Components

(H20),

Sl

EXASCALE
COMPUTING
PROJECT

Count
o - N w ' w [e)] ~

Count
o (=) N w oy (9] ()] ~ o0

Degree

Reward = 1.53

2
Node Degree

Reward = 2.57

N
P\
<)

Node Degree

Geometric Cycles Path Measures

O Trimers O Tetramers
1 Pentamers 0 Hexamers

/>/

O Trimers 4 Tetramers
2 Pentamers 3 Hexamers

N\

|

Diameter = 6
Avg Shortest Path Length = 2.75

Diameter = 3
Avg Shortest Path Length = 1.89

Introducing Punishments into the Reward

« Bonding Measures ¢G=V,E))
~ Water molecules not connected to the cluster & b \\\
+ ~ltw e V:Dw) = 0} e NN
- Greater than 4 hydrogen bonds per water molecule ! ! ‘:.______:‘
) z —relu(D(v) — 4) i /‘.\\ pd e
vev #" ~".\ //

* Molecular Measures “‘
— Oxygen-oxygen and hydrogen-hydrogen bonds

— Incorrect structure for each molecule /’O\ﬁ---
P GIOEE% ')

« Each O has exactly 2 covalent bonds
« Each H has exactly 1 covalent bond VeV >§\J‘)'"f

— Incorrect hydrogen bonding structure e -
« Each O can have max 2 hydrogen bonds

N \
\\ \ \
Q. —relu(d(v) - x) * O/Xy A
« Each H can have max 1 hydrogen bonds VeV 0/\7 rﬁ

Training Graph
Surrogate Models at
Extreme Scale

—
S \
\ EXASCALE
COMPUTING
\ PROJECT
g

A supervised learning model for Molecular Property Prediction

Our tutorial will cover:

— Components of the ML model

— Theory behind our model

— Implementation in HPC

— Optimizing Performance on HPC

But first, installing the tools on your laptop...

https://github.com/exalearn/design-tutorial

https://github.com/exalearn/design-tutorial

Key Components of a Supervised Learning Model

Data Loader Model Architecture Execution Engine

[

Data Ingest and Transformations

< Expensive: Occurs before training

Networkx JSON TFRecord

Training
File

Entries

Graph Dictionary

1. Review the “0_parse-data.ipynb” notebook
2. Open the ‘mpnn’ directory
3. Review the first part of “0_create-model.ipynb”

Demonstration: Building TFRecord Datasets and Data Loaders

Key concept: How to maximize “batch/second”

Storing as Protobuf-format data

def make_tfrecord(atoms):
"""Make and serialize a TFRecord for in NFP format

Args:

atoms (ase.Atoms): Atoms object of the water cluster
Returns:

(bytes) Water cluster as a serialized string

nun

Make the network data
features = make_nfp_network(atoms)

Convert the data to TF features
features = dict((k, _numpy_to_tf_feature(v)) for k, v in features.items())

example_proto = tf.train.Example(features=tf.train.Features(feature=features))

return example_proto.SerializeToString()

—
S \
\ EXASCALE
) COMPUTING
\ PROJECT
S

Parallel Data Processing

rates = []
para = args.parallel
for b in tqdm(args.batch_sizes, desc=f'Parallel Fixed {para}'):
r = tf.data.TFRecordDataset(_uncompressed_path).batch(b).map(parse_records, para)\
.map(prepare_for_batching, para). \
map (combine_graphs, para).map(make_training_tuple, para).prefetch(8)
rates.append(test_data_loader(r))
with open(os.path.join(out_dir, f'parallel-fixed-{para}.json'), 'w') as fp:
json.dump({
‘description': f'Parallel with threads fixed at {para}, prefetching, data on disk’',
'batch_sizes': args.batch_sizes,
'rates’: rates
}, fp, indent=2)

103 -
] —@— (5 2550K

@ GTX 670
S —o— KNL
©
2
et
©
o

102) g

102 103
Batch Size

Network Architecture: Message Passing Neural
Networks — 1_)‘

~ 103 seconds |E.wo, ...
A generalized form of neural networks for graph data, e Pas;i;g Newral Net
introduced by Gilmer et al. (Google) i e
. . ~ 1072 seconds
[Mention the assumptions]
Figure I A Message Passing Neural Netwprk predicts qgantum
Existing strategies mostly variants of poncive DET eneutaton) et s compuiationdly

| 1. Gather messages from neighboring nodes|

mgt = N MRS, by)

WEN (V)

|2. Update node state given messages |

hltyﬂ = Ut(hg' ngﬂ)

| 3. Readout graph properties given node states |

¥ =R({hy|v € G})

\ P exAscaLe
ECP s Ref: Gilmer et al. (2017). arXiv:1704.01212v2

Implementation: Key Bits

Define Network Structure in [tf.]Keras Message Passing as Tensorflow Operations
def call(self, inputs): def call(self, inputs):
atom_types, bond_types, node_graph_indices, connectivity = inputs original_atom_state, original_bond_state, connectivity = inputs

Initialize the atom and bond embedding vectors
atom_state = self.atom_embedding(atom_types)
bond_state = self.bond_embedding(bond_types)

Batch norm on incoming layers
atom_state = self.atom_bn(original_atom_state)
bond_state = self.bond_bn(original_bond_state)
Perform the message passing
for message_layer in self.message_layers: # Gather atoms to bond dimension
atom_state, bond_state = message_layer([atom_state, bond_state, connectivity]) target_atom = tf.gather(atom_state, connectivity[:, 0])

source_atom = tf.gather(atom_state, connectivity[:, 1])

Add some dropout before hte last year
atom_state = self.dropout_layer(atom_state)
Update bond states with source and target atom info

Reduce atom to a single prediction new_bond_state = tf.concat([source_atom, target_atom, bond state], 1)
atom_solubility = self.output_atomwise_dense(atom_state) + self.atom_mean(atom_types) self.bond_update 1(new_bond_state)

self.bond_update_2(new_bond_state)

new_bond_state
new_bond_state

Sum over all atoms in a mol
mol_energy = tf.math.segment_sum(atom_solubility, node_graph_indices)
Update atom states with neighboring bonds

return mol_energy source_atom = self.atom_update(source_atom)
messages = source_atom * new_bond_state
messages = tf.math.segment_sum(messages, connectivity[:, @])

Add new states to their incoming values (residual connection)
bond_state = original bond_state + new_bond_state

atom_state = original_atom_state + messages

return atom state. bond state

_—
\\ EXASCALE
) COMPUTING
\ PROJECT
o

Execution Engine: Tensorflow (tf.keras) with Horovod

Key concepts: Training Data
Batch 1 || Batch2

1. Data Parallel Training 8atch 3 || Batch 4

- Each rank has identical weights
- Allreduce gradients each batch / \
GPU1 GPU2

2. Rlng Reduce Convolution Convolution
- How Horovod performs the Allreduce RelU G adients ReLU
3. Large Batch Size Convolution Convolution
- Each node needs a large batch HEEY el
- You also need large learning rates v *
Output Output

Evaluate

PPPPPPP

E\(C\\)F’ EouELTNG Reference: https://resources.rescale.com/deep-learning-with-multiple-gpus-on-rescale-torch/

https://resources.rescale.com/deep-learning-with-multiple-gpus-on-rescale-torch/

Optimizing Training Performance

Sl

Tuning Batch Size and Intra-Node Replicas

Rate (entry/s)

102 103 104
Global Batch Size

Rate (entry/s)

Optimizing Internode Parallelism

12000 7
—&— rpn=16 /
10000_ _——— Ideal /
8000 -
6000 -

4000 A

2000 A

Number of Nodes

Summary: Optimization Tips and Tricks

MPNNs for Water Cluster Energy Training it Quickly on Cray XC40

What data? e Batch sizes of ~1024 for optimal

4.4 M networks, stored as TFRecords parallelism

What model? e Parallel data loader mandatory for
Tensorflow gather/reduce operations manycore architectures
Trained how?
' W Exploit intranode parallelism for
Horovod on ALCF’s Theta models too small for KNLs

Summary

Generic Design framework aimed at multiple chemistry applications

Developing domain-aware RL models via graph-theoretic rewards

Scaling of end-to-end framework development under progress

Ready to start integration with application partners

L N
LR »
Ao

»

Thank you!

,

ECP E==e
L=

y) 2 fs“"" \ U.S. DEPARTMENT OF Office of
U N ENERGY | science

