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Design: Expanding Computational Design to the ExaScale
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HPC

Today: Humans steer HPC, HPC performs simulations Needed Solution: HPC steering itself

Generate
Designs

Simulate 
Designs

Exascale HPC

Electrolytes

Water Clusters

Better Batteries

Better Science

Why Exascale?
Large computational cost (>1011 molecules in GDB17) 
Tight coupling between heterogeneous computations
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HPC Steering HPC Requires Extensive Machine Learning
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Motivation
How do we automate the design of chemical 
structures that have interesting properties?

Our approach: Deep Reinforcement Learning for Graphs

Right figure from:  Liang, J., Xu, Y., Liu, R. and Zhu, X., 2019. QM-sym, a symmetrized quantum chemistry 
database of 135 kilo molecules. Scientific Data, 6(1), pp.1-8.
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Tutorial Objectives

• Formulating Design as a Graph 
Reinforcement Learning Problem

• Training Graph Surrogate Models at Extreme Scale
• Developing Reward Functions via Graph-Theoretic 

Chemical Descriptors



Formulating Design as a 
Graph Reinforcement 
Learning Problem
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Key Goals: Scalability and Interpretability

Scalability: handle combinatorial explosion in the 
state-search space

Interpretability: generate design pathways that 
scientists can reason about
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How will we find our Target Structures?

Learning MRL is the 
focus on this tutorial
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Learning MRL

• Recollect key RL concepts from Control 
presentation

• Extends with graph-based representation 
learning methods and algorithms

At

Environment represented 
via Attributed Graphs

Design Agent

GraphEnv

St St+1

Rt+1Rt

State represented via Attributed Graph 
and graph-theoretic chemical descriptors Reward estimated 

via chemical 
descriptors and/or 
graph neural 
network based 
surrogate models

ExaRL
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Introducing the ML Workflow to Computational Scientists 

1. Describe the graph-based 
data representation

2. Show how to train a surrogate 
model for graph structured 
data

3. Show how to design graph 
based chemical descriptors to 
encode the state and steer 
rewards

Optimized 
Design

Score 
Design

Generate new 
structure

Calculate property
with surrogate model

Assign reward 
relative to target goal

ExaLearn
Design AppSample 

Design

Assign 
Goodness

Initial 
Design



Developing Reward 
Functions via 
Graph-Theoretic 
Chemical 
Descriptors
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Designing domain-aware reward functions

How do you go from state St (graph) to reward Rt (scalar)?

At

Design Agent

GraphEnv

St St+1

Rt+1Rt ?
St Rt
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Test Case: Low-lying structures of water clusters

• Test database contains ~5M water 
clusters with 3–30 molecules, all 
lying within 5 kcal/mol of the 
putative minimum for each cluster 
size

•Database generated through Monte 
Carlo-type potential energy search
– Many repeated calculations
– Many local minima missed

A. Rakshit, P. Bandyapadhyay, J.P. Heindel, S.S. Xantheas. Atlas of putative minima and low-
lying energy networks of water clusters n = 3 – 25. J. Chem. Phys. 151, 214307 (2019).
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Test Case: (H2O)5 → (H2O)10

E = -36.8035 kcal/mol

(H2O)5 (H2O)10

E = -94.6707 kcal/mol
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Formalizing the Structure by Degrees
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r0 = 2.00 rs = 1.42

rs = 1.47

rs = 1.29

rs = 1.43

rs = 3.00
E = -94.67 kcal/mol

rs = 2.60
E = -91.50 kcal/molwhere Ds is the degree distribution at step s. As shown for the final 

steps, the highest reward corresponds to the lowest energy structure.

𝑟" = 𝐸 𝐷" − 𝑣𝑎𝑟(𝐷")
Step-wise reward rs:
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r0 = 2.00 rs = 1.29

rs = 1.43

rs = 3.00
E = -94.67 kcal/mol

rs = 2.20 rs = 2.22

rs = 2.29

rs = 2.58
rs = 2.60

E = -91.50 kcal/mol

rs = 1.42

rs = 1.47

Increasing the reward at each step does 
not lead to the lowest-energy cluster!
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•The reward can be tuned to produce specific structures

•Cluster properties are non-linear as the number of water molecules 
increases

Tuning the Reward though Additional Metrics

5% lowest-energy clustersall clusters
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Graph-theoretic Reward Components

Path Measures

Diameter = 3
Avg Shortest Path Length = 1.89

Geometric Cycles

0 Trimers        4 Tetramers
2 Pentamers   3 Hexamers 

0 Trimers        0 Tetramers
1 Pentamers   0 Hexamers 

Degree(H2O)9

Diameter = 6
Avg Shortest Path Length = 2.75
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Introducing Punishments into the Reward
• Bonding Measures

– Water molecules not connected to the cluster
• x

– Greater than 4 hydrogen bonds per water molecule
• d

• Molecular Measures
– Oxygen-oxygen and hydrogen-hydrogen bonds
– Incorrect structure for each molecule

• Each O has exactly 2 covalent bonds
• Each H has exactly 1 covalent bond

– Incorrect hydrogen bonding structure
• Each O can have max 2 hydrogen bonds
• Each H can have max 1 hydrogen bonds

G = (𝑉, 𝐸)

.
/∈1

−𝑟𝑒𝑙𝑢(𝐷 𝑣 − 𝑥)

.
/∈1

−(𝐷 𝑣 − 𝑥)6

.
/∈1

−𝑟𝑒𝑙𝑢(𝐷 𝑣 − 4)

− 𝑣 ∈ 𝑉:𝐷 𝑣 = 0



Training Graph 
Surrogate Models at 
Extreme Scale
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A supervised learning model for Molecular Property Prediction

Our tutorial will cover:
– Components of the ML model
– Theory behind our model
– Implementation in HPC
– Optimizing Performance on HPC

But first, installing the tools on your laptop…

https://github.com/exalearn/design-tutorial

https://github.com/exalearn/design-tutorial
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Key Components of a Supervised Learning Model

Data Loader Model Architecture Execution Engine
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Data Ingest and Transformations

ASE DB Networkx
Graph

JSON 
Dictionary

TFRecord
File

Training 
Entries

Expensive: Occurs before training

1. Review the “0_parse-data.ipynb” notebook
2. Open the `mpnn` directory
3. Review the first part of “0_create-model.ipynb”
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Demonstration: Building TFRecord Datasets and Data Loaders

Key concept: How to maximize “batch/second” 

Storing as Protobuf-format data Parallel Data Processing
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Network Architecture: Message Passing Neural 
Networks
A generalized form of neural networks for graph data,
introduced by Gilmer et al. (Google)

[Mention the assumptions]

Existing strategies mostly variants of

𝑚/
;<= = .

>∈?(/)

𝑴𝒕(ℎ/; , ℎ>; , 𝑒/>)

ℎ/;<= = 𝑼𝒕 ℎ/; ,𝑚/
;<=

D𝑦 = 𝑹({ℎ/H|𝑣 ∈ 𝐺})

1. Gather messages from neighboring nodes

2. Update node state given messages

3. Readout graph properties given node states

Ref: Gilmer et al. (2017). arXiv:1704.01212v2
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Implementation: Key Bits
Define Network Structure in [tf.]Keras Message Passing as Tensorflow Operations
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Execution Engine: Tensorflow (tf.keras) with Horovod

Key concepts:

1. Data Parallel Training
- Each rank has identical weights
- Allreduce gradients each batch

2. Ring Reduce
- How Horovod performs the Allreduce

3. Large Batch Size
- Each node needs a large batch
- You also need large learning rates

Reference: https://resources.rescale.com/deep-learning-with-multiple-gpus-on-rescale-torch/

https://resources.rescale.com/deep-learning-with-multiple-gpus-on-rescale-torch/
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Optimizing Training Performance
Tuning Batch Size and Intra-Node Replicas Optimizing Internode Parallelism
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Summary: Optimization Tips and Tricks

MPNNs for Water Cluster Energy
What data? 
4.4 M networks, stored as TFRecords

What model?
Tensorflow gather/reduce operations

Trained how?
Horovod on ALCF’s Theta

Training it Quickly on Cray XC40
•Batch sizes of ~1024 for optimal 

parallelism 

•Parallel data loader mandatory for 
manycore architectures

•Exploit intranode parallelism for 
models too small for KNLs
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Summary

• Generic Design framework aimed at multiple chemistry applications
• Developing domain-aware RL models via graph-theoretic rewards
• Scaling of end-to-end framework development under progress
• Ready to start integration with application partners



Thank you!


