ExaLearn-Design: Computational Design at Exascale with Deep Reinforcement Learning on Graphs

Sutanay Choudhury (PNNL), Logan Ward (ANL), Jenna Pope (PNNL), Malachi Schram (PNNL), Joseph Heindel (University of Washington), Sotiris Xantheas (PNNL), Marcus Schwarting (ANL), Yinzhi Huang (PNNL), Sayan Ghosh (PNNL), Jim Ang (PNNL), Ian Foster (ANL)

Design: Expanding Computational Design to the ExaScale

Today: Humans steer HPC, HPC performs simulations Needed Solution: HPC steering itself

Why Exascale?

Large computational cost (>10¹¹ molecules in GDB17) Tight coupling between heterogeneous computations

HPC Steering HPC Requires Extensive Machine Learning

Motivation

How do we automate the design of chemical structures that have interesting properties?

EXASCALE COMPUTING

Right figure from: Liang, J., Xu, Y., Liu, R. and Zhu, X., 2019. QM-sym, a symmetrized quantum chemistry database of 135 kilo molecules. Scientific Data, 6(1), pp.1-8.

Tutorial Objectives

- Formulating Design as a Graph • **Reinforcement Learning Problem**
- Training Graph Surrogate Models at Extreme Scale
- **Developing Reward Functions via Graph-Theoretic Chemical Descriptors**

Formulating Design as a Graph Reinforcement Learning Problem

Key Goals: Scalability and Interpretability

How will we find our Target Structures?

Algorithm 1 A search algorithm to find a target molecular structure starting from an initial structure G_{mol}^{init} using a reinforcement learning model M_{RL} and branching factor b.

1: **procedure** SEARCH($G_{mol}^{init}, b, M_{RL}$) INIT(*results*, Ø) 2: INIT(\mathbb{P}_{cand} , EXPLORE-NEXT(M_{RL} , $[G_{mol}^{init}]$, b))) 3: Learning M_{RI} is the while $size(\mathbb{P}_{cand}) > 0$ do 4: focus on this tutorial $pathway = POP(\mathbb{P}_{cand})$ 5: $N_{cand} = \text{EXPLORE-NEXT}(M_{RL}, pathway, b)$ 6: for all $G_{new} \in N_{cand}$ do 7: $P_{new} = pathway \cup \{G_{new}\}$ 8: if MATCH-TARGET(G_{new}) then 9: results = results \cup { G_{new} } 10: else 11: $PUSH(\mathbb{P}_{cand}, P_{new})$ 12: **RETURN** results 13: 14: end procedure

game tree picture courtesy: Googl

Learning M_{RL}

- Recollect key RL concepts from Control presentation
- Extends with graph-based representation • learning methods and algorithms

Introducing the ML Workflow to Computational Scientists

- 1. Describe the graph-based data representation
- 2. Show how to train a surrogate model for graph structured data
- 3. Show how to design graph based chemical descriptors to encode the state and steer rewards

Developing Reward Functions via Graph-Theoretic Chemical Descriptors

Designing domain-aware reward functions

How do you go from state S_t (graph) to reward R_t (scalar)?

Test Case: Low-lying structures of water clusters

- Test database contains ~5M water clusters with 3–30 molecules, all lying within 5 kcal/mol of the putative minimum for each cluster size
- Database generated through Monte Carlo-type potential energy search
 - Many repeated calculations
 - Many local minima missed

A. Rakshit, P. Bandyapadhyay, J.P. Heindel, S.S. Xantheas. Atlas of putative minima and lowlying energy networks of water clusters n = 3 - 25. *J. Chem. Phys.* **151**, 214307 (2019).

Test Case: $(H_2O)_5 \rightarrow (H_2O)_{10}$

Formalizing the Structure by Degrees

EXASCALE COMPUTING

steps, the highest reward corresponds to the lowest energy structure.

Tuning the Reward though Additional Metrics

- The reward can be tuned to produce specific structures
- Cluster properties are non-linear as the number of water molecules increases

Graph-theoretic Reward Components

Introducing Punishments into the Reward

- Bonding Measures
 - Water molecules not connected to the cluster
 - $-|\{v \in V: D(v) = 0\}|$
 - Greater than 4 hydrogen bonds per water molecule

$$\sum_{v \in V} -relu(D(v)-4)$$

- Molecular Measures
 - Oxygen-oxygen and hydrogen-hydrogen bonds
 - Incorrect structure for each molecule
 - Each O has exactly 2 covalent bonds
 - Each H has exactly 1 covalent bond
 - Incorrect hydrogen bonding structure
 - Each O can have max 2 hydrogen bonds
 - Each H can have max 1 hydrogen bonds

lecule
ds

$$-(D(v) - x)^2$$

 $-relu(D(v) - x)$

C - (V F)

-(D(v)

Training Graph Surrogate Models at Extreme Scale

A supervised learning model for Molecular Property Prediction

Our tutorial will cover:

- Components of the ML model
- Theory behind our model
- Implementation in HPC
- Optimizing Performance on HPC

But first, installing the tools on your laptop...

https://github.com/exalearn/design-tutorial

Key Components of a Supervised Learning Model

Data Ingest and Transformations

- 1. Review the "0_parse-data.ipynb" notebook
- 2. Open the `mpnn` directory
- 3. Review the first part of "0_create-model.ipynb"

Demonstration: Building TFRecord Datasets and Data Loaders

Key concept: How to maximize "batch/second"

Storing as Protobuf-format data

def make_tfrecord(atoms):

"""Make and serialize a TFRecord for in NFP format

Args:

atoms (ase.Atoms): Atoms object of the water cluster Returns:

(bytes) Water cluster as a serialized string

```
# Make the network data
features = make_nfp_network(atoms)
```

Convert the data to TF features
features = dict((k, _numpy_to_tf_feature(v)) for k, v in features.items())

example_proto = tf.train.Example(features=tf.train.Features(feature=features))
return example_proto.SerializeToString()

Parallel Data Processing

```
rates = []
para = args.parallel
for b in tqdm(args.batch_sizes, desc=f'Parallel Fixed {para}'):
    r = tf.data.TFRecordDataset(_uncompressed_path).batch(b).map(parse_records, para)\
        .map(prepare_for_batching, para). \
        map(combine_graphs, para).map(make_training_tuple, para).prefetch(8)
        rates.append(test_data_loader(r))
with open(os.path.join(out_dir, f'parallel-fixed-{para}.json'), 'w') as fp:
        json.dump({
            'description': f'Parallel with threads fixed at {para}, prefetching, data on disk',
            'batch_sizes': args.batch_sizes,
```

'rates': rates

}, fp, indent=2)

Network Architecture: Message Passing Neural Networks

A generalized form of neural networks for graph data, introduced by Gilmer et al. (Google)

[Mention the assumptions]

Existing strategies mostly variants of

$$m_{v}^{t+1} = \sum_{w \in N(v)} \boldsymbol{M}_{t}(h_{v}^{t}, h_{w}^{t}, e_{vw})$$

 $h_v^{t+1} = \boldsymbol{U_t}(h_v^t, m_v^{t+1})$

 $\hat{y} = \mathbf{R}(\{h_v^T | v \in G\})$

 $\begin{array}{c} & DFT \\ & \sim 10^3 \text{ seconds} \\ & & E, \omega_0, \dots \\ & & & & \\ & & & \\ & &$

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

. <u>Gather</u> messages from neighboring nodes

2. <u>Update</u> node state given messages

3. **<u>Readout</u>** graph properties given node states

Ref: Gilmer et al. (2017). arXiv:1704.01212v2

Implementation: Key Bits

Define Network Structure in [tf.]Keras

def call(self, inputs):
 atom_types, bond_types, node_graph_indices, connectivity = inputs

Initialize the atom and bond embedding vectors
atom_state = self.atom_embedding(atom_types)
bond_state = self.bond_embedding(bond_types)

Perform the message passing

for message_layer in self.message_layers: atom_state, bond_state = message_layer([atom_state, bond_state, connectivity])

Add some dropout before hte last year atom_state = self.dropout_layer(atom_state)

Reduce atom to a single prediction
atom_solubility = self.output_atomwise_dense(atom_state) + self.atom_mean(atom_types)

Sum over all atoms in a mol mol_energy = tf.math.segment_sum(atom_solubility, node_graph_indices)

return mol_energy

Message Passing as Tensorflow Operations

def call(self, inputs):
 original_atom_state, original_bond_state, connectivity = inputs

Batch norm on incoming layers
atom_state = self.atom_bn(original_atom_state)
bond_state = self.bond_bn(original_bond_state)

Gather atoms to bond dimension

target_atom = tf.gather(atom_state, connectivity[:, 0])
source_atom = tf.gather(atom_state, connectivity[:, 1])

Update bond states with source and target atom info new_bond_state = tf.concat([source_atom, target_atom, bond_state], 1) new_bond_state = self.bond_update_1(new_bond_state) new_bond_state = self.bond_update_2(new_bond_state)

Update atom states with neighboring bonds source_atom = self.atom_update(source_atom) messages = source_atom * new_bond_state messages = tf.math.segment_sum(messages, connectivity[:, 0])

Add new states to their incoming values (residual connection)
bond_state = original_bond_state + new_bond_state
atom_state = original_atom_state + messages

return atom state. bond state

Execution Engine: Tensorflow (tf.keras) with Horovod

Key concepts:

- 1. Data Parallel Training
 - Each rank has identical weights
 - Allreduce gradients each batch
- 2. Ring Reduce
 - How Horovod performs the Allreduce
- 3. Large Batch Size
 - Each node needs a large batch
 - You also need large learning rates

Optimizing Training Performance

Summary: Optimization Tips and Tricks

MPNNs for Water Cluster Energy

What data?

4.4 M networks, stored as TFRecords

What model?

Tensorflow gather/reduce operations

Trained how?

Horovod on ALCF's Theta

Training it Quickly on Cray XC40

- Batch sizes of ~1024 for optimal parallelism
- Parallel data loader mandatory for manycore architectures
- Exploit intranode parallelism for models too small for KNLs

Summary

- Generic Design framework aimed at multiple chemistry applications
- Developing domain-aware RL models via graph-theoretic rewards
- Scaling of end-to-end framework development under progress
- Ready to start integration with application partners

