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Design: Expanding Computational Design to the ExaScale
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Today: Humans steer HPC, HPC performs simulations Needed Solution: HPC steering itself

Why Exascale?

Large computational cost (>10' molecules in GDB17)
= Tight coupling between heterogeneous computations




HPC Steering HPC Requires Extensive Machine Learning
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Motivation

How do we automate the design of chemical
structures that have interesting properties?
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Our approach: Deep Reinforcement Learning for Graphs

database of 135 kilo molecules. Scientific Data, 6(1), pp.1-8.
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Tutorial Objectives

« Formulating Design as a Graph
Reinforcement Learning Problem

« Training Graph Surrogate Models at Extreme Scale
« Developing Reward Functions via Graph-Theoretic

Chemical Descriptors 3 ﬁ
1-bond adwi ~ ¢
=
¢ b
S St Sea¥
Highest
energy 9 \

Lowest Fe \<_

energy fjl ¥ rotation

symmetry

lengthen
with ethyl

=

bE
LR

replace W|th

retain

reduce reduce
symmetry
lengthen

Benzene | ith ethyl
D6h

retain l replace with

bromine atom symmetry symmetry | bromine atom

A

-

\

5‘“! 3
A

Faees

retain Iengthen
symmetry with methyl

2-adds, 1-remove M

C2h

k




Formulating Design as a
Graph Reinforcement
Learning Problem
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Key Goals: Scalability and Interpretability

Scalability: handle combinatorial explosion in the
state-search space a3
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Combinatorial game tree picture courtesy: Google’s DeepMind

Interpretability: generate design pathways that
P N scientists can reason about




How will we find our Target Structures?

Algorithm 1 A search algorithm to find a target molecular struc-
ture starting from an initial structure G:r’l’; ; using a reinforcement

learning model Mg and branching factor b.

1: procedure SEARCH(G;’;;; ,b, MR1)
2 INIT(results, 0)

3 INIT(P,4pnq> EXPLORE-NEXT(MRL, [GI1], b)) Learning Mg, is the
4: while size(P.4,4) > 0 do > f RL .

.. pathway = pop(P, ) ocus on this tutorial
6

7
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N_.and = EXPLORE-NEXT(Mg, pathway, b)
fOl‘ all Gnew € Ncand dO

Phew = pathway U {Gpew}

if MATCH-TARGET(Gyevv) then

10: results = results U {Gpew}
11: else
12: PUSH(P, 4,45 Pnew)

13: RETURN results
14: end procedure
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Learning My,

Recollect key RL concepts from Control
presentation

Extends with graph-based representation
learning methods and algorithms

State represented via Attributed Graph

and graph-theoretic chemical descriptors
/
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Introducing the ML Workflow to Computational Scientists

1. Describe the graph-based Gonerate mow
data representation structure

I e —l ExalLearn
L Design App

2. Show how to train a surrogate
model for graph structured Initial
data Design

3. Show how to design graph

based chemical descriptors to Optimized
encode the state and steer L Design
rewards - = = =0 =
Calculate property Assign reward
with surrogate model relative to target goal




Developing Reward
Functions via
Graph-Theoretic
Chemical
Descriptors




Designing domain-aware reward functions

How do you go from state S; (graph) to reward R, (scalar)?
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Test Case: Low-lying structures of water clusters

« Test database contains ~M water
clusters with 3—30 molecules, all =3
lying within 5 kcal/mol of the X
putative minimum for each cluster s
size

e Database generated through Monte :lff;}(
Carlo-type potential energy search  "=*°

— Many repeated calculations #jf;
~ Many local minima missed tr
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A. Rakshit, P. Bandyapadhyay, J.P. Heindel, S.S. Xantheas. Atlas of putative minima and low-
lying energy networks of water clusters n = 3 — 25. J. Chem. Phys. 151, 214307 (2019).




Test Case: (H,0); — (H,0)4,

E =-94.6707 kcal/mol




Formalizing the Structure by Degrees
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r.=3.00
E =-94.67 kcal/mol

Step-wise reward r:

1y = E(Ds) — y/var(Ds) 9r§ ngo I/mol
= -91. cal/mo

where D, is the degree distribution at step s. As shown for the final
steps, the highest reward corresponds to the lowest energy structure.




e rs = 2.60
rs =2.20 ry = 2.22 E=-91.50 kcal/mol

Increasing the reward at each step does

not lead to the lowest-energy cluster! il N




Tuning the Reward though Additional Metrics

 The reward can be tuned to produce specific structures

 Cluster properties are non-linear as the number of water molecules

Increases
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Graph-theoretic Reward Components
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Introducing Punishments into the Reward

« Bonding Measures ¢G=V,E) )
~ Water molecules not connected to the cluster & b \\\
+ ~ltw e V:Dw) = 0} e NN
- Greater than 4 hydrogen bonds per water molecule ! ! ‘:.______:‘
) z —relu(D(v) — 4) i /‘.\\ pd e
vev #" ~".\ //

* Molecular Measures “‘
— Oxygen-oxygen and hydrogen-hydrogen bonds

— Incorrect structure for each molecule /’O\ﬁ---
P GIOEE% ' )

« Each O has exactly 2 covalent bonds
« Each H has exactly 1 covalent bond VeV >§\J‘)'"f

— Incorrect hydrogen bonding structure e -
« Each O can have max 2 hydrogen bonds

N \
\\ \ \
Q. —relu(d(v) - x) * O/Xy A
« Each H can have max 1 hydrogen bonds VeV 0/\7 rﬁ




Training Graph
Surrogate Models at
Extreme Scale
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A supervised learning model for Molecular Property Prediction

Our tutorial will cover:

— Components of the ML model

— Theory behind our model

— Implementation in HPC

— Optimizing Performance on HPC

But first, installing the tools on your laptop...

https://github.com/exalearn/design-tutorial



https://github.com/exalearn/design-tutorial

Key Components of a Supervised Learning Model

Data Loader Model Architecture Execution Engine

[




Data Ingest and Transformations

< Expensive: Occurs before training

Networkx JSON TFRecord

Training
File

Entries

Graph Dictionary

1. Review the “0_parse-data.ipynb” notebook
2. Open the ‘mpnn’ directory
3. Review the first part of “0_create-model.ipynb”




Demonstration: Building TFRecord Datasets and Data Loaders

Key concept: How to maximize “batch/second”

Storing as Protobuf-format data

def make_tfrecord(atoms):
"""Make and serialize a TFRecord for in NFP format

Args:

atoms (ase.Atoms): Atoms object of the water cluster
Returns:

(bytes) Water cluster as a serialized string

nun

# Make the network data
features = make_nfp_network(atoms)

# Convert the data to TF features
features = dict((k, _numpy_to_tf_feature(v)) for k, v in features.items())

example_proto = tf.train.Example(features=tf.train.Features(feature=features))

return example_proto.SerializeToString()
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Parallel Data Processing

rates = []
para = args.parallel
for b in tqdm(args.batch_sizes, desc=f'Parallel Fixed {para}'):
r = tf.data.TFRecordDataset(_uncompressed_path).batch(b).map(parse_records, para)\
.map(prepare_for_batching, para). \
map (combine_graphs, para).map(make_training_tuple, para).prefetch(8)
rates.append(test_data_loader(r))
with open(os.path.join(out_dir, f'parallel-fixed-{para}.json'), 'w') as fp:
json.dump({
‘description': f'Parallel with threads fixed at {para}, prefetching, data on disk’',
'batch_sizes': args.batch_sizes,
'rates’: rates
}, fp, indent=2)

103 -
] —@— (5 2550K

@ GTX 670
S —o— KNL
©
2
et
©
o

102 ) g

102 103
Batch Size




Network Architecture: Message Passing Neural
Networks — 1_)‘

~ 103 seconds |E.wo, ...
A generalized form of neural networks for graph data, e Pas;i;g Newral Net
introduced by Gilmer et al. (Google) i e
. . ~ 1072 seconds
[Mention the assumptions]
Figure I A Message Passing Neural Netwprk predicts qgantum
Existing strategies mostly variants of poncive DET eneutaton ) et s compuiationdly

| 1. Gather messages from neighboring nodes|

mgt = N MRS, by )

WEN (V)

|2. Update node state given messages |

hltyﬂ = Ut(hg' ngﬂ)

| 3. Readout graph properties given node states |

¥ =R({hy|v € G})

\ P exAscaLe
ECP s Ref: Gilmer et al. (2017). arXiv:1704.01212v2




Implementation: Key Bits

Define Network Structure in [tf.]Keras Message Passing as Tensorflow Operations
def call(self, inputs): def call(self, inputs):
atom_types, bond_types, node_graph_indices, connectivity = inputs original_atom_state, original_bond_state, connectivity = inputs

# Initialize the atom and bond embedding vectors
atom_state = self.atom_embedding(atom_types)
bond_state = self.bond_embedding(bond_types)

# Batch norm on incoming layers
atom_state = self.atom_bn(original_atom_state)
bond_state = self.bond_bn(original_bond_state)
# Perform the message passing
for message_layer in self.message_layers: # Gather atoms to bond dimension
atom_state, bond_state = message_layer([atom_state, bond_state, connectivity]) target_atom = tf.gather(atom_state, connectivity[:, 0])

source_atom = tf.gather(atom_state, connectivity[:, 1])

# Add some dropout before hte last year
atom_state = self.dropout_layer(atom_state)
# Update bond states with source and target atom info

# Reduce atom to a single prediction new_bond_state = tf.concat([source_atom, target_atom, bond state], 1)
atom_solubility = self.output_atomwise_dense(atom_state) + self.atom_mean(atom_types) self.bond_update 1(new_bond_state)

self.bond_update_2(new_bond_state)

new_bond_state
new_bond_state

# Sum over all atoms in a mol
mol_energy = tf.math.segment_sum(atom_solubility, node_graph_indices)
# Update atom states with neighboring bonds

return mol_energy source_atom = self.atom_update(source_atom)
messages = source_atom * new_bond_state
messages = tf.math.segment_sum(messages, connectivity[:, @])

# Add new states to their incoming values (residual connection)
bond_state = original bond_state + new_bond_state

atom_state = original_atom_state + messages

return atom state. bond state
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Execution Engine: Tensorflow (tf.keras) with Horovod

Key concepts: Training Data
Batch 1 || Batch2

1. Data Parallel Training 8atch 3 || Batch 4

- Each rank has identical weights
- Allreduce gradients each batch / \
GPU1 GPU2

2. Rlng Reduce Convolution Convolution
- How Horovod performs the Allreduce RelU G adients ReLU
3. Large Batch Size Convolution Convolution
- Each node needs a large batch HEEY el
- You also need large learning rates v *
Output Output

Evaluate

PPPPPPP

E\(C\\)F’ EouELTNG Reference: https://resources.rescale.com/deep-learning-with-multiple-gpus-on-rescale-torch/



https://resources.rescale.com/deep-learning-with-multiple-gpus-on-rescale-torch/

Optimizing Training Performance
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Rate (entry/s)

102 103 104
Global Batch Size

Rate (entry/s)

Optimizing Internode Parallelism

12000 7
—&— rpn=16 /
10000_ _——— Ideal /
8000 -
6000 -

4000 A

2000 A

Number of Nodes




Summary: Optimization Tips and Tricks

MPNNs for Water Cluster Energy Training it Quickly on Cray XC40

What data? e Batch sizes of ~1024 for optimal

4.4 M networks, stored as TFRecords parallelism

What model? e Parallel data loader mandatory for
Tensorflow gather/reduce operations manycore architectures
Trained how?
' W  Exploit intranode parallelism for
Horovod on ALCF’s Theta models too small for KNLs




Summary

Generic Design framework aimed at multiple chemistry applications

Developing domain-aware RL models via graph-theoretic rewards

Scaling of end-to-end framework development under progress

Ready to start integration with application partners
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Thank you!
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