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Heterogeneous catalysis, biofuel development, 
catalysis synthesis and characterization

Computational Chemistry, Quantum Computing, Condensed Matter Physics

Natural Language Processing, Large Language ModelsMachine learning for computational chemistry

Large language models, graph neural 
networks, neural symbolic reasoning
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Outline

• Scientific driver 
• Motivation and limitation for LLMs
• Multi-Modal/Compound AI
• Quantitative and Qualitative Analysis
• Scaling needs
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What is ChemReasoner?

Let us begin with our focus: Catalysis

A new AI system designed for Chemistry
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Catalysis – Need and Challenges
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Why Catalysis is Hard?

The process unfolding at microscopic scale can go wrong in many ways

Float away
Dissociate

Bad landing!

Image courtesy: Lan, J., Palizhati, et al., 2023. AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials.  npj Computational Materials, 9(1), p.172.
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Good catalyst – “works every most of the time”

Imagine facilitating this controlled dance of molecules at large scale

Image courtesy: Lan, J., Palizhati, et al., 2023. AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials.  npj Computational Materials, 9(1), p.172.
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The curse of Combinatorics

Number of possible catalysts 
involving 3 metals drawn from a set 
of 50 is … 19600

Multiply that by the number of reactants
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Economic and Societal Impact

It takes energy for everything
• To break or form a bond
• To hold molecules together in a stable way

A good catalyst is one 
• Who will get the job done with less 

extrinsic energy
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Inspiration from Literature
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Inspiration

• Generate a sequence of questions/answers that 
mimic human reasoning

• Similar to how we justify in a scientific publication
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Hypothesis for catalyst design – Chain of thought 

What is good catalyst 

Shows higher activity and selectivity

What is the descriptor for catalytic activity 

Adsorption energy of reactants and 
intermediates on catalyst surface

How do I tune adsorption energy??

Let’s think step by step…..



13

Reasoning/thinking via catalyst descriptor
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The vision from Catalysis community

The original paper [1] expressed the vision for searching over a “hypothetical database” that stored performance 
metrics for any group of chemical descriptors. Promising candidates returned by such a search would be further 
screened by computational chemistry simulations and experiments in the laboratory. 

[1] Nørskov, J.K., Abild-Pedersen, F., Studt, F. and Bligaard, T., 2011. Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences, 108(3)
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Examples of Automated Screening from Literature

Reproduced from: Ulissi, Z. W.; Tang, M. T.; Xiao, J.; Liu, X.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; 
Jaramillo, T. F.; Chan, K.; Nørskov, J. K. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and 
Reveal Active Site Motifs for CO2 Reduction. ACS Catal. 2017, 7, 6600−6608.
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Came along … ChatGPT
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How did ChatGPT do?

Chemistry experts in the 
laboratory said its answer looks 
like taken out of a Science 
Encyclopedia

Lacked specificity and 
explanations grounded in deep 
scientific principles chemistry 
experts demand
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LLM-driven Computational Screening
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Revisiting the idea for Computational Screening

Reproduced from: Ulissi, Z. W.; Tang, M. T.; Xiao, J.; Liu, X.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; 
Jaramillo, T. F.; Chan, K.; Nørskov, J. K. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and 
Reveal Active Site Motifs for CO2 Reduction. ACS Catal. 2017, 7, 6600−6608.
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Our Idea: Expanding the Search by considering a 
wide range of Chemical Descriptors

Why limit ourselves to a few options?

Let’s explore a wider chemical space using a larger set of descriptors!
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Our novelty: Generative AI receiving feedback 
from Quantum Chemistry

Explore the chemical space via LLM-based Heuristic Search methods

Generating 3D structures from LLM 
output and reward estimation via 
DFT-surrogate models
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ChemReasoner’s Exploration of Chemical Space

Instruction: Generate a list of top-5 
metallic catalysts for the adsorption of *CO

["Platinum (Pt)", "Palladium 
(Pd)", "Gold (Au)", "Nickel 
(Ni)", "Copper (Cu)]

Instruction: 
search within 
transition metals

Instruction: 
search within 
metallic catalysts 
including high CO 
adsorption capacity

Instruction: 
search within 
metallic catalysts 
excluding poor CO 
selectivity

['Rhodium (Rh)', 
'Ruthenium (Ru)', 
'Iron (Fe)', 
'Silver (Ag)', 
'Iridium (Ir)’]

Instruction: 
filter candidates 
with low 
stability

Instruction: 
constrain with high 
resistance to CO 
poisoning

Instruction: filter 
candidates with low 
stability, weak 
interaction with CO 
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How about we build a new AI system?
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3D Atomistic Structure-driven Reward 
Computation and Screening
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Validation of Candidates – Concept of Reward 
Function

• The language model driven search returns strings in English
• We need a numeric measure (reward) to determine which candidates to prune 

and expand promising ones

• Given a string from the LLM output such 
as “Platinum”, we infer the 3D structure

• We represent the 3D structure as a “3D-
Atom Graph” – such a representation 
considers relative positions and 
orientations

• This configuration is passed to a DFT 
simulation or a trained 3DGNN

Adsorption Energy 

Reward

More sophisticated reward functions are explored later



Choosing the bulk structure
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7 Different Compositions and 
structures of Cu-Zn
Taken from Materials Project 
Database 

Cu3Zn Cu3ZnCu3Zn Cu3Zn

Cu2Zn Cu2Zn6 Cu10Zn16



Sampling slab configurations
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• Sample slab 
configurations for each 
bulk:
§ Miller indices from 0 to 2
§ Unique Cell shifts
§ 36.7 slab/bulk

• Following Methods of 
Open Catalyst Project 
https://github.com/Open
-Catalyst-Project/ocp 

https://github.com/Open-Catalyst-Project/ocp
https://github.com/Open-Catalyst-Project/ocp


Heuristic placement of *CO (pymatgen)

• Find “surface sites” (sites close to 
miller indices)

• Find on-top, bridge, hollow 
adsorbate sites via triangulation
§ Remove based on symmetry

• Adsorbate is randomly rotated to 
promote variation

• 63.4 sites/slab
28



Relaxation of *CO w/ GNN
• Given an initial 

structure, relax atoms 
according to a GNN 
trained to predict DFT 
adsorption energies of 
catalysts
§ GemNet-dT

• Global minimum of all 
initial configurations is 
the adsorption energy 
for CO/CuZn

• 300 steps, fmax 0.05, 
batch size 20

• ~2 minutes/batch/GPU
§ V100 29

GNN

GNN 𝐸!"#

𝐹$!% > 0.05

No, converged

Yes

LBFGS 
Step
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Exploration of Complex Reward Functions 
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Design of catalyst and catalytic processes are 
key to achieve net-zero target

Catalyze complex feedstocks with multiple 
functional groups, through the coordination 
between different active sites

Multifunctional catalyst 

Ø Active sites

Ø Overall reaction pathway 

Ø Intermediate binding energy

Ø Activation barrier
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Controlling surface intermediate is key to 
enhance selectivity 

§ Major algorithmic contribution: 
§ Computing the reward function by reasoning in terms of intermediate steps
§ We query the LLM to consider different possible reaction pathways (such as above) 

and corresponding surface intermediates
§ Then compute a single score based on all the possibilities and their activation barrier

C1 products

C2 products

Nature catalysis 2020, 3, 75
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Formulation of Reactivity-focused Reward 
Functions
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Quantitative and Qualitative Validation
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We had catalysis researchers at PNNL compare 
ChemReasoner outputs with ChatGPT

Recent studies shows it also outperformed GPT-4.

ChemReasoner was better.

This is expected because modern AI systems such as 
GPT-4 are not designed to reason at atomistic scale

If anyone (OpenAI, Google etc.) developed a better Large 
Language Model, ChemReasoner should get even better. It 
complements and enhances them – does not complete.
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Developed a new 
reasoning dataset 
focused on 
Catalysis
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Qualitative 
Analysis

Analyze how search progresses through the tree 
from root to leaf
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Qualitative 
Analysis
Expert-based review of GPT 3.5 
and our output
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Quantitative Measure
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Modeling Search Efficiency

• What are the optimal number of actions in the search tree?
• What are the typical search depth for best results?



41

Inner Monologue: Inspecting the LLM’s Rationale



42

Scalability
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ChemReasoner is Inference-Intensive

• Each node in the search tree executes 2-3 
LLM inferences

• 400-600 inferences per search tree
• We use parallel beam search with 

asynchronous LLM calls

• Each node in the search tree executes 
2400-3200 GNN inferences

• We use caching to avoid duplicate calls
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A Single Cycle of Hypothesis Generation and Testing

Hypothesis generation 
(LLM)

3D Atom
 Graph Generator

Property prediction 
with UQ (GNN)

DFT Simulation

Active Learning

High uncertainty



Training and Inference on Molecular GNNs require 
processing many small and sparse graphs

See [https://sites.google.com/view/ai4hydronet/home] for details
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Vision for Future: Heterogeneous Computing-
driven Computational Pipeline

Hypothesis 
Generation 

(LLM)

Property 
prediction with 

UQ (GNN)
DFT Simulation

3D Atom Graph 
Generator
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Conclusions

• ChemReasoner represents an emerging class of AI systems (Compound AI) 
that are promising to build on the foundation of Large Language Models

• Initial studies demonstrate that the integration of Generative AI and 
Computational Chemistry can outperform pure LLM (such as GPT-3.5 and 
GPT-4) based approaches 

• Such systems involve heterogeneous computing workload with distinct scaling 
characteristics
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• Scaling Atomistic Neural Network Potentials: https://sites.google.com/view/ai4hydronet/home

• ChemReasoner: https://github.com/pnnl/chemreasoner/
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Questions?

https://sites.google.com/view/ai4hydronet/home
https://github.com/pnnl/chemreasoner/

