
GEDet: Detecting Erroneous Nodes with A Few Examples
Sheng Guan

Case Western Reserve
University

sxg967@case.edu

Hanchao Ma
Case Western Reserve

University
hxm382@case.edu

Sutanay Choudhury
Pacific Northwest National

Laboratory
Sutanay.Choudhury@pnnl.gov

Yinghui Wu
Case Western Reserve

University
yxw1650@case.edu

ABSTRACT
Detecting nodes with erroneous values in real-world graphs re-
mains challenging due to the lack of examples and various error
scenarios. We demonstrate GEDet, an error detection engine that
can detect erroneous nodes in graphs with a few examples. The
GEDet framework tackles error detection as a few-shot node clas-
sification problem. We invite the attendees to experience the fol-
lowing unique features. (1) Few-shot detection. Users only need
to provide a few examples of erroneous nodes to perform error
detection with GEDet. GEDet achieves desirable accuracy with
(a) a graph augmentation module, which automatically generates
synthetic examples to learn the classifier, and (b) an adversarial
detection module, which improves classifiers to better distinguish
erroneous nodes from both cleaned nodes and synthetic examples.
We show that GEDet significantly improves the state-of-the-art
error detection methods. (2) Diverse error scenarios. GEDet profiles
data errors with a built-in library of transformation functions from
correct values to errors. Users can also easily “plug in” new error
types or examples. (3) User-centric detection. GEDet supports (a)
an active learning mode to engage users to verify detected results,
and adapts the error detection process accordingly; and (b) visual
interfaces to interpret and track detected errors.

PVLDB Reference Format:
Sheng Guan, Hanchao Ma, Sutanay Choudhury, and Yinghui Wu. GEDet:
Detecting Erroneous Nodes with A Few Examples. PVLDB, 14(1):
XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
http://vldb.org/pvldb/format_vol14.html.

1 INTRODUCTION
Ensuring high-quality graph data is important for applications such
as knowledge bases and social networks [6]. The cornerstone task
is to detect the nodes with incorrect values (“erroneous nodes”).
Various methods have been developed to curate and infer new
graph data from correct counterparts [6]. Nevertheless, detecting
erroneous nodes in real-world graphs remains challenging.
(1) There are often multiple types of errors. Existing methods [1] are
optimized to cope with a single type of error. They may work well
for individual scenarios such as violations of data constraints [3]
or anomalies [5], yet may not capture multiple types of errors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

v2(film)

(film) v4

title: HarryPotterSeries
genre: fantasy

(book)
basedOn

main subject: magic

v1

genre: filmBasedOnNovel
title: HarryPotter_I

v3 (film)

title: HarryPotter_III
genre: fantasy
main subject: time travel

title: HarryPotter_II
genre: filmBasedOnNovel
duration: 10,000,000m

authorO
f

screenWriterOf

screenWriterOf

screenWrite
rO

f

subsequentWork v0

(person)

name: J.K. Rowling

main subject: magic

Figure 1: Erroneous Nodes in Knowledge Graphs

(2) One may also use supervised learning to generate a node classi-
fier from labeled nodes (“correct” or “erroneous”). However, it is
often hard to obtain a large amount of (manually) labeled examples.

Example 1: Fig. 1 illustrates a fraction of a real-world knowledge
graph about films. Each node carries a type (e.g., film) and a set
of attributes (e.g., ‘title’) with values (e.g., “HarryPotter_I”). Each
edge carries the relationships between nodes (e.g., screenWriterOf).
There are three erroneous nodes1 with different types of errors:

◦ The genre of film 𝑣1 should be “fantasy”;
◦ Film 𝑣2 has the same genre as 𝑣1 that should be “fantasy”,
and a duration “10,000,000m” that should be “161m”.

◦ Film 𝑣3’s main subject “time travel” should be “magic”.
The erroneous nodes 𝑣1 and 𝑣2 can be captured as (1) violation

of a data constraint 𝜑 [3] that states “if a movie is based on a book
(e.g., 𝑣4), then they should have the same genre and main subject”,
and (2) an outlier with large duration [5]. Nevertheless, the node 𝑣3
cannot be captured by either outlier detection (as “time travel” is a
common subject value), or the above data constraint (as there is no
link between 𝑣3 and 𝑣4). Sequential application of the two detection
process overlapped at 𝑣2, yet 𝑣3 remains undetected. 2

GEDet. We demonstrate GEDet, a first few-shot learning based
Graph Erroneous node DETection system [4]. GEDet only requires
a few examples and automatically derives a node classifier to distin-
guish erroneous nodes from correct ones, and can simultaneously
detect multiple types of errors with a desired accuracy.
“Few-shot” detection. To generalize error detection from a few ex-
amples, GEDet enables few-shot learning [8] to enrich the exam-
ples with similar yet synthetic examples for node classification. It
encodes error generation as transformations, which are functions
that (conditionally) convert correct attribute values to data errors
(e.g., anomalies, constraint violations). GEDet derives and main-
tains transformations from the examples in a built-in library, and
performs a graph augmentation process that best approximates

1https://www.wikidata.org/w/index.php?title=Q102438&action=history

https://doi.org/XX.XX/XXX.XX
http://vldb.org/pvldb/format_vol14.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

the observed error distribution. Accordingly, it generates synthetic
example nodes as well as useful links as enriched examples.

To detect erroneous nodes from correct ones in graphs, GEDet
follows representation learning [9] to embed nodes to their low-
dimensional vectors (node embeddings), such that the derived labels
(“error” or “correct”) from the embeddings minimize the classifica-
tion error given the examples (including synthetic ones). GEDet
jointly incorporates attribute-, node-, and topology-level features
to derive the classifier. To further reduce the impact of low-quality
synthetic examples to the accuracy, GEDet advocates adversarial
learning that enforces the classifier to also distinguish synthetic
and real examples (“synthetic” or “real”) produced by a generator
in a “two-player game”. These allow GEDet to achieve desirable
accuracy (both precision and recall) with little manual effort.
Multi-type error detection. GEDet supports multiple types of errors.
By default, it cold-starts with few-shot learning and error detection
with a built-in library of transformations. Users can easily declare
new error types by “plugging in” examples or transformations.
GEDet bookkeeps the transformations and adapts the classifiers to
detect errors upon new transformations.
“Human-in-the-loop” error detection. GEDet supports both (1) auto-
mated detection that requires little manual effort for system tuning,
and (2) interactive detection, which queries the user to verify de-
tected errors and incrementally updates the node classifier via active
learning. Moreover, it provides explanations to users on detected
errors with relevant transformations and suggested correct values.

GEDet provides user-friendly interfaces for error detection and
interpretation 2 with open-source code3 and a video walkthrough4.

2 SYSTEM OVERVIEW
2.1 Graphs and Transformations
GEDet framework uses the following specifications.
Graphs. GEDet processes an attributed graph𝐺 (where each node
is a tuple) in its feature representation (𝑋,𝐴), where (a) 𝑋 is a
matrix of nodes features, and each row𝑋𝑣 of𝑋 is a vector encoding
of a node tuple 𝑣 (obtained by e.g., word embedding or one-hot
encoding); and (b) 𝐴 is the adjacency matrix of 𝐺 .
Examples. An example is simply a node 𝑣 ∈ 𝑉 labeled as ‘correct’
or erroneous (‘error’). GEDet only requires users to provide a few
examples 𝑉T for error detection. Optionally, for an erroneous ex-
ample 𝑣 ∈ 𝑉T and its attribute 𝑣 .𝐴 with a wrong value 𝑎′, a correct
counterpart 𝑎∗ can be specified.
Transformations. GEDet characterizes error generation with trans-
formations. A transformation (𝐶,𝜙) specifies a condition 𝐶 (can be
empty) and an editing function 𝜙 defined on node attributes. The
transformation (𝐶,𝜙) selects all the nodes that satisfy the condition
𝐶 , and for each node 𝑣 , applies 𝜙 to replace the value 𝑣 .𝐴 to an
incorrect value 𝑎′. GEDetmaintains a built-in library Ψ of transfor-
mations that are labeled with its type. By default, it has three types
of predefined built-in transformations: “string noise” (randomly
modify 𝑣 .𝐴 as a string), “anomalies”, and “constraint violations”.

2https://gdet.hcma.repl.co/
3https://github.com/CWRU-DB-Group/GDet
4https://youtube.com/playlist?list=PL0YKREc7vLdWfX3lXplYvpiklA8zAFEfS

G = (X, A)

Graph Augmentation

node augmentation

neighbor augmentation

Figure 2: Workflow of GEDet Few-shot Detection

Example 2: GEDet initializes a built-in library Ψ of transforma-
tions from e.g., data constraints, domain information or quality rules.
For example, given the data constraint 𝜑 (Example 1), it registers
a transformation 𝑇1 with a condition 𝐶 that selects nodes with an
edge “basedOn” to any “book” node, and 𝜙1 (𝑣 .𝑔𝑒𝑛𝑟𝑒, 𝜑) ↦−→ ‘film-
BasedOnNovel’. Another transformation 𝑇2 can be specified with
empty 𝜙2 (𝑣 .𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ↦−→ a (𝑎>60, 000𝑚) with type “anomalies”.

A user may only need to provide two examples𝑉T = {𝑣1 (‘error’),
𝑣4 (‘correct’) } to GEDet (Example 1), The transformations in Ψ
(e.g., 𝑇1) will be used to produce synthetic examples. 2

2.2 Workflow of GEDet
We start with the major modules and enabling models of GEDet.

Graph augmentation module. This module learns how to gen-
erate errors from the examples 𝑉T , and in turn enriches examples
with synthetic errors and neighbor information. This benefits the
follow-up graph representation learning [9], which iteratively up-
dates node embeddings via label propagation.
(1) To generalize from a few examples, GEDet generates synthetic
erroneous examples from 𝑉T with an error generative model H ,
which simulates the generation of various errors characterized by
transformations Ψ. The error generation samples a set of correct
nodes, and appliesH for each sample to create a set of synthetic
erroneous examples (with a synthetic label “error”). The sampling
favors correct nodes with erroneous neighbors, to mitigate skewed
label distribution (e.g., neighbors that are all correct) that may lead
to biased detection. This augments node features 𝑋 to 𝑋𝐻 .
(2) GEDet adopts a link inference model L to introduce a set of
virtual neighbors for the nodes (including examples). The model L
favors to link a node with its reachable, labeled non-neighbors that
have similar features, thus enrich its neighbors and mitigates the
impact of sparse labels. This enhances adjacency matrix 𝐴 to 𝐴𝐿 .

Error generator H . Given transformations Ψ and a set of erroneous
examples𝑉 𝑒 ⊆ 𝑉T (where each node 𝑣 ∈ 𝑉 𝑒 has a correct counter-
part 𝑣∗), the error generative model H (with learnable weights𝑊)
aims to simulate the real transformations from 𝑣∗ to their erroneous
counterparts via a weighted combination of Ψ. To learn H , GEDet
solves the following optimization problem:

𝑊 ∗ = argmax
𝑊

log
1
𝑍
exp(

∑
𝑣∈𝑉 𝑒

𝐹 (𝑣,Ψ(𝑣∗)))

where 𝑍 is a normalizer such that the log-term is in (0, 1]. The func-
tion 𝐹 (𝑣,Ψ(𝑣∗)) = ∑𝑛

1
∑
𝜙 𝑗 ∈Ψ 𝑤 𝑗 · sim(𝑣 .𝐴𝑖 , 𝜙 𝑗 (𝑣 ∗ .𝐴𝑖)) quantifies

the accumulated similarity between the attribute values of each
node (an n-ary tuple) 𝑣∗ and their transformed counterparts.

2

Link inference model L. The modelL (1) samples a set of nodes and
their most similar counterparts (determined by a node similarity
function [4]), and learns a transition probability for each edge
in 𝐺 , such that each sampled node is more likely to reach their
similar counterparts compared with other nodes via a random walk
following the transition probability.H then enhances the adjacency
matrix 𝑋 with new links that connect a (test) node to its top-𝑘 non-
neighbors with the highest transition probability.

Graph augmentation (illustrated in Fig. 2) yields the following
as input for representation learning: (1) 𝐺𝐻 = (𝑋𝐻 , 𝐴𝐿) with fea-
tures of synthetic examples; and (2)𝐺𝐿 = (𝑋,𝐴𝐿), with the original
features 𝑋 . Both share the augmented topology 𝐴𝐿 .

Example 3: Given a correct node 𝑣4 (Example 2) and a transfor-
mation 𝑇3 with (𝑣 .𝑚𝑎𝑖𝑛 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡) ↦−→ (𝑎=‘time travel’), the error
generatorH replaces 𝑣4 with a synthetic erroneous node 𝑣 ′4, where
attribute ‘main subject’ has a value ‘time travel’. The link inference
L further identifies nodes 𝑣1 and 𝑣 ′4 as useful virtual neighbors of 𝑣3
due to their common series “Harry Potter” and similar duration (not
shown). The augmented data helps GEDet to produce a classifier
that captures the erroneous node 𝑣3. 2

Adversarial detection module. This module generates a node
classifier to detect erroneous nodes. To reduce the impact of syn-
thetic examples, it exploits the principle of adversarial learning. The
idea is to enforce the classifier to further differentiate synthetic
examples from real ones. Specifically, GEDet jointly trains

◦ a generator G, to “fool” a discriminator D by simulating the
distribution of real labels over the augmented graph𝐺𝐻 ; and

◦ a discriminator D, which aims to classify nodes from 𝐺𝐿

and 𝐺𝐻 as real or synthetic.
as in a two-player game. By forcing the discriminator to differentiate
not only “error” and “correct” but also “synthetic” and “real” labels,
GEDet further improves the accuracy of error detection.
Graph autoencoderZ. GEDet uses a graph autoencoder (GAE)Z,
a class of graph neural networks, to learn node representations for
downstream error detection. Given a graph𝐺 = (𝑋,𝐴), a GAE learns
an encoding 𝑍 ∈ R |𝑉 |×𝑑′

(𝑑 ′ ≪ 𝑑) of 𝑋 (by an encoder Enc), from
which reconstructing (𝑋,𝐴) is possible (by a decoder Dec). GEDet
learns embeddings 𝑍𝐻 and 𝑍𝐿 for 𝐺𝐻=(𝑋𝐻 , 𝐴𝐿) and 𝐺𝐿=(𝑋,𝐴𝐿),
respectively. For 𝐺𝐻 , it aims to minimize a reconstruction loss
min dist((𝑋𝐻 , 𝐴𝐿), Dec(Enc((𝑋𝐻 , 𝐴𝐿))), determined by a distance
metric dist. The goal for 𝐺𝐿 is similarly defined.
Adversarial models (G and D). GEDet integrates a generative ad-
versarial network (GAN) that consists of a generator G and a dis-
criminator D. It jointly learns G and D to minimize a bi-criteria
loss 𝐿(D) = 𝐿𝑠 + 𝜆𝐿𝑢 , where the supervised loss 𝐿𝑠 (defined by the
cross-entropy errors) quantifies the loss of accuracy on classifying
“error” and “correct” examples in a supervised manner. The unsu-
pervised loss 𝐿𝑢 (with a balance factor 𝜆=0.5 by default) quantifies
the accuracy loss on classifying the real and synthetic examples.
The loss is minimized by learning a node embedding matrix M.
The matrixM is then converted via a softmax function to “error”
or “correct” class probabilities (see [4] for a formal analysis).

Building Models. GEDet learns H from Ψ and 𝑉T with L-
BFGS [7], and L with supervised random-walk [2]. It builds graph

Figure 3: GEDet Architecture (storage layer not shown)

autoencoder Z with the layer-wise label propagation paradigm,
where the i-th layer updates the embedding of each node by aggre-
gating the embeddings of its neighbors.GEDet applies a co-training
algorithm [4] to jointly learn G and D.

Workflow. GEDet supports automatic and interactive modes. In
both modes, it only requires a few examples from users to cold-start.
Automated detection. In this mode, GEDet automatically detects er-
roneous nodes from scratch without manual tuning effort. (1) In the
building phase, GEDet cold-starts to build the models from scratch
over given examples 𝑉T via few-shot learning. It initializes trans-
formations including (a) mappings from provided correct values
and erroneous ones in 𝑉T , (b) available data constraints and qual-
ity rules, and (c) random string transformations. (2) The detection
phase loads the trained models to assign labels to test nodes of
interests (the rest of nodes in 𝐺 by default). For each test node,
GEDet infers its embedding in the classification layer of discrimi-
nator D, applies a softmax function to convert the embedding to
class probabilities, and chooses the larger one (‘error’ or ‘correct’).
Interactive detection. In the interactive mode, GEDet periodically
samples detected erroneous nodes and request users for verification.
Following active learning, GEDet adopts a query selection policy
that favors top-𝑘 (𝑘=4 by default) nodes with the least confidence
in its most likely label. It queries the user to verify the labels of
selected nodes, receives the corrected labels (if any), and incre-
mentally updates the adversarial models G and D to improve the
accuracy of error detection. Users may also “plug in” new error
types as transformations. In this case,GEDet also updates the graph
augmentation models H and L to incorporate new error types.

2.3 System Architecture
GEDet adopts a three-tier architecture (Fig. 3). (1) The interactive
GUI allows users to submit examples and transformation (stored
as JSON objects), set detection modes, and inspect errors and in-
terpretations via visual panels (see Section 3). (2) The model tier
integrates (a) a featurizer that transform input graphs into feature
representations, (b) the graph augmentation and adversarial de-
tection modules, (c) a scheduler that orchestrates the learning and
loading of GEDet models for different detection modes, and (d) a
query selector that selects detected errors with the selection pol-
icy in the interactive mode. (3) The storage tier manages graphs,
examples, and built-in transformation libraries.

3

Figure 4: User Interface – Automatic Error Detection
3 DEMONSTRATION OVERVIEW

Environment and setup. The GEDet builders and servers are
deployed in Google Colaboratory (Colab) environment with Ten-
sorflow libraries and NVIDIA TESLA P100 with 16GB GPUmemory.
We demonstrate GEDet with the following datasets.

Dataset |𝑉 | |𝐸 | # node types # edge types avg. # attr
DBP 5 2.2M 7.4M 73 584 4
OAG 6 0.6M 1.7M 5 6 2
Yelp 7 1.5M 1.6M 42 20 5

These datasets contain both data errors injected by an error
generator BART 8, and random errors from multiple scenarios
including misspelling, outlier values, and string disturbance.

Scenarios. We walk through GEDet with the following scenarios.
Automatic error detection. We invite the users to experience auto-
matic error detection with the user-friendly GUI (Fig. 4). A user can
select graph data and submit examples via “Configuration” panel.
Using the “Exploration” panel, users will be able to inspect (1) the
augmented examples, and enhanced neighbors of specific nodes in
the “Graph View” tab, (2) the detected erroneous nodes and their
interpretations (e.g., error types, transformations, and suggested
correct values), and (3) the clustered visualization of the node em-
beddingM in terms of error type, in the “Embedding View”. The
accuracy is reported in the “Performance monitor”.
Interactive detection. We also invite users to interact with GEDet
to provide guided error detection. Users can switch to “interactive
mode” in Configuration panel. GEDet will request users to label a
list of detected erroneous nodes. To facilitate the manual labeling of
these nodes,GEDet highlights these nodes in the “Graph View”, and
suggests the top-2 similar nodes with labels are in the “Exploration”
panel. The GEDet scheduler resumes learning after user completes
verification. Users can also observe the change of decision boundary
with the “Embedding View” as more nodes are verified (Fig.5).
Plug-and-detect. A user can also declare and plug in new transfor-
mations. Three examples are illustrated below, which are induced
from data constraints with validated quality.
5https://wiki.dbpedia.org/develop/datasets
6https://www.openacademic.ai/oag/
7https://www.kaggle.com/yelp-dataset/yelp-dataset
8https://github.com/dbunibas/BART

Figure 5: User Interface – Interactive Error Detection
Node type Constraint (support/confidence) Transformation (editing function)

Music(DBP) If a music genre of 𝑣∗ has derivative “New_Age”, its
origin is “Blues” (0.99)

𝜙 (𝑣∗ .𝑜𝑟𝑖𝑔𝑖𝑛)
↦−→ 𝑎 (𝑎 ≠ “𝐵𝑙𝑢𝑒𝑠′′)

Transport(DBP) If two transportation tools 𝑣∗1 and 𝑣
∗
2 are related, they

have the same manufacturer. (705/0.88)
𝜙 (𝑣∗1 .𝑚𝑎𝑛𝑢𝑓 𝑎𝑐𝑡𝑢𝑟𝑒𝑟)
↦−→ 𝑎 (𝑎 ≠ 𝑎∗1)

UserGroup(Yelp)
If users 𝑣∗1 and 𝑣∗2 friend each other and have the
same ratings, and 𝑣∗1 has score “5”, then 𝑣∗2 also has
score “5”. (157/1.0)

𝜙 (𝑣∗2 .score)
↦−→ 𝑎 (𝑎 ≠ “5′′)

Performance comparison. We also compare GEDet with 8 state-of-
the-art methods (in “Performance” panel) in terms of accuracy,
learning cost and detection cost, including: (1) 4 standalonemethods
covering constraint-based detection, outlier detection, and learning-
based classification, (2) 2 state-of-the-art ensemble methods, and
(3) 2 variants of GEDet without data augmentation or adversarial
detection. while there is no “single winner” from single methods
for multi-type errors, GEDet always achieves comparable precision
with the best method, and significantly outperforms all the methods
in recall. It is also feasible to detect errors in large graphs. For
example, it takes on average 350 seconds on model training over
OAG, and up to 8 seconds to detect errors, with a gain of precision
30% and recall 35% on average compared with baseline methods.

REFERENCES
[1] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F Ilyas,

Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-
tecting data errors: Where are we and what needs to be done? VLDB (2016).

[2] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting
and recommending links in social networks. In WSDM.

[3] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for graphs.
In SIGMOD.

[4] Sheng Guan, Peng Lin, Hanchao Ma, and Yinghui Wu. 2020. GEDet: Adversarially
Learned Few-shot Detection of Erroneous Nodes in Graphs. In IEEE International
Conference on Big Data.

[5] Ninghao Liu, Xiao Huang, and Xia Hu. 2017. Accelerated Local Anomaly Detection
via Resolving Attributed Networks.. In IJCAI.

[6] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic web (2017).

[7] Charles Sutton, Andrew McCallum, et al. 2012. An introduction to conditional
random fields. Foundations and Trends® in Machine Learning 4, 4 (2012), 267–373.

[8] Yaqing Wang, Quanming Yao, James Kwok, and Lionel M Ni. 2019. Generalizing
from a few examples: A survey on few-shot learning. In arXiv: 1904.05046.

[9] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

4

	Abstract
	1 Introduction
	2 System Overview
	2.1 Graphs and Transformations
	2.2 Workflow of GEDet
	2.3 System Architecture

	3 Demonstration Overview
	References

