

Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Cyber Networks

Sutanay Choudhury

March 28, 2021

Advanced Computing Mathematics and Data Division

Work with Ping Wang (Virginia Tech), Khushbu Agarwal (PNNL), Colby Ham (PNNL), Chandan Reddy (Virginia Tech)

PNNL is operated by Battelle for the U.S. Department of Energy

Key Insights from this Talk

https://github.com/pnnl/SLICE

- Developing graph-based ML methods
 - Moving from a single embedding per node paradigm to contextual embedding learning
- If you are a cyber-security researcher/practitioner
 - Consider using self-supervised learning-based link prediction as a key method
 - 29% boost in F1-score for a 7-day intrusion detection dataset
- If you are interested in accelerating graphbased ML:
 - What does it mean to interleave GNNs and Transformers?
 - How to scale up context generation?

Co-authorship Network

Clinica Graph

Heterogeneous networks:

- Integrate different data sources, build relations between them.
- Allows us to further discover underlying correlations with link prediction task.

> Existing link prediction methods:

- > Provide a **static** embedding for each entity that is agnostic to any specific context.
- > Without considering **contextual information** of the downstream task.

Image source: <u>https://www.biorxiv.org/content/10.1101/2020.05.09.084897v1</u>; <u>https://www.smrfoundation.org/2013/12/11/university-of-maryland-computer-science-class-cmsc734-student-projects-put-nodexl-to-work-finding-insights-in-diverse-networks/; https://www.wired.com/2012/04/facebook-disease-friends/</u>

Clinical Knowledge

The Importance of Embedding Learning

Embedding learning is a critical step for graph-based machine-learning

Each node in a graph is mapped to a point in vector space

Is a Single Embedding Enough?

Entities exhibit diverse behavior in heterogeneous networks that are reflected via their diverse associations

Can we do better by recognizing this heterogeneity and eliminating any bias they introduce?

Example Motivation from an Academic Network

Academic Network with authors publish on diverse topics

State-of-the-art methods aggregate global semantics for authors based on all papers

Pacific Northwest

We propose Contextual Embedding Learning

Start with a global representation, and move the embedding of a set of nodes in vector space based on a **task context**

Recent work have focused on clustering-based approaches that assigns multiple embeddings corresponding to clusters or communities (see "related work" in [1])

Such methods are limited by the need to pre-assign fixed size clusters to all, as well by the complexity of clustering heterogeneous networks

1. Wang, P., Agarwal, K., Ham, C., Choudhury, S. and Reddy, C.K., 2020. Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks. WebConf 2021.

5.7

Our Contributions

Define Contextual Subgraphs	 Contextual embeddings are learnt based on task-specific sull Node representations will be dynamically changing with different subscriptions with the dynamically changing with different subscriptions with the dynamical subscription subscription subscription subscriptions with the dynamical subscription subscription subscription subscription subscriptions with the dynamical subscription subscription subscription subscription subscriptions with the dynamical subscription subscription subscription subscriptions subscriptint subscriptions s
Self-supervised Learning Approach	 Learn higher-order semantic associations by simultaneously global information and local context. Two training stages: pre-training and fine-turning.
Performance Evaluation	 Compare with static and contextual embedding learning met Demonstrate the interpretability, effectiveness of contextual term

ranslation.

hods.

capturing the

bgraphs. erent subgraphs.

Neural Architecture

3.7

Contextual Embedding Task

Context Generation and Representation

> Context Generation: generate context for each node or a node-pair.

- Shortest Path: consider the shortest path between two nodes.
- Random strategy: BFS based star graph; random walks with a certain depth. \bullet

> Context Representation:

- Subgraph g_c is encoded as $g_c = (v_1, v_2, \dots, v_{|V_c|})$. Here, $|V_c|$ is the number of nodes in g_c .
- Global embeddings of nodes in g_c are represented as $H_c = (h_1, h_2, \dots, h_{|V_c|})$. Where, h_i is the low-dimensional representation of node *i* that considers various information in the global graph, such as the structures and attributes.
- We mainly consider the pre-trained node embeddings from node2vec, which is a random walk-based skip-gram methods.

Contextual Translation

- > Semantic association matrix \overline{A} :
 - Given two nodes v_i and v_j in the context, the corresponding entry \bar{A}_{ij}^k can be computed as follows.

$$\overline{A}_{ij}^{k} = \frac{\exp\left(\left(W_{1}h_{i}^{k}\right)^{T}\left(W_{2}h_{j}^{k}\right)\right)}{\sum_{t=1}^{|V_{c}|} \exp\left(\left(W_{1}h_{i}^{k}\right)^{T}\left(W_{2}h_{t}^{k}\right)\right)}$$

> Contextual Translation: Apply multiple translation layers; in k + 1 layer, \overline{A}^k is updated as follows:

$$H_c^{k+1} = f_{NN}(W_s H_c^k \bar{A}^k + H_c^k)$$

The node embeddings from different layers (K in total) are aggregated as the contextual embedding:

$$\tilde{h}_i = h_i^1 \oplus h_i^2 \oplus \cdots \oplus h_i^K$$

Contextual Translation Maintain global relations Learn local context

Contextual Learning Tasks

> Self-supervised Contextual Node Prediction in Pre-training:

- Generate context subgraphs for each node in the network via random walks and randomly mask nodes in each subgraph for prediction.
- **Objective:** maximize the probability of observing the masked node based on the context.

> Fine-tuning with Supervised Contextual Link Prediction:

- Generate context subgraphs for each node-pair and perform the binary link prediction.
- **Objective:** maximizing the prediction score of positive edges and minimizing the score for negative edges.
- The probability of the edge between two nodes is calculated as the similarity score between their contextual embeddings.

Experiments

Datasets used:

- Amazon (E-commerce): co-viewing and co-purchasing links between products.
- DBLP (Academic): relationships between papers, authors, venues and terms. \succ
- Freebase (Knowledge Base): links between people and their demographic features.
- Twitter (Social Networks): links between tweets users.
- Healthcare¹ (MIMIC III): relations between patients and their diagnosed medical conditions, procedures and medications received during each hospital admission.

Dataset	Amazon	DBLP	Freebase	Twitter	Healthcare
# Nodes	10,099	37,791	14,541	9,990	4,683
# Edges	129,811	170,794	248,611	294,330	205,428
# Relations	2	3	237	4	4
# Training (positive)	126,535	119,554	272,115	282,115	164,816
# Development	14,756	51,242	35,070	32,926	40,612
# Testing	29,492	51,238	40,932	65,838	40,612

1. Codes for generating the Healthcare network based on MIMIC III is available at https://github.com/pnnl/SLICE

SLiCE Outperforms Most Recent Methods

• Experiments performed on NVIDIA Tesla P100 GPU

Type	Mathada		micro-F1 se		AUCROC						
Type	Methods	Amazon	DBLP	Freebase	Twitter	Healthcare	Amazon	DBLP	Freebase	Twitter	Healthcare
Static	TransE	50.28	49.60	47.78	50.60	48.42	50.53	49.05	48.18	50.26	49.80
	RefE	51.86	49.60	50.25	48.55	47.96	51.74	48.50	50.41	49.28	50.73
	node2vec	88.06	86.71	83.69	72.72	71.92	94.48	93.87	89.77	80.48	79.42
	metapath2vec	88.86	44.58	77.18	66.73	62.64	95.42	38.41	84.33	72.16	69.11
Contextual	GAN	85.47	OOM	OOM	85.01	81.94	92.86	OOM	OOM	92.39	89.72
	GATNE-T	89.06	57.04	OOM	68.16	58.02	94.74	58.44	OOM	72.07	73.40
	RGCN	65.03	28.84	OOM	63.46	56.73	74.77	50.35	OOM	64.35	46.15
	CompGCN	83.42	40.10	65.39	40.75	39.84	90.14	34.04	72.01	39.86	38.03
	HGT	65.77	53.32	OOM	53.13	76.54	68.66	50.85	OOM	59.32	82.36
	asp2vec	94.89	78.82	90.02	88.29	85.46	98.51	92.51	96.61	95.00	92.97
	SLICE _{w/o GF}	67.01	66.02	66.31	67.07	60.88	62.87	57.52	55.31	66.69	63.11
	SLICE _{w/o FT}	94.99	89.34	90.01	82.19	81.58	98.66	96.07	96.33	90.38	89.51
	SLICE (Ours)	96.00 [*]	90.70*	90.26	89.30*	91.64*	99.02 *	96.69*	96.41	95.73 *	94.94 *

The symbol "OOM" indicates out of memory.

The symbol * indicates that the improvement is statistically significant over the best baseline by two-sided t-test with p-value 10^{-10} .

Computational Complexity

- Doubling the context length does not raise run time proportionately
- Approximately linear to the number of edges (coverage of graph matters more)

ately ph matters more)

The Effect of Contextualization

Similar results are obtained on Amazon, Freebase and Twitter datasets

Pacific

Northwest NATIONAL LABORATORY

Motivation for Link Prediction in Cyber Security

Need

We see some periodic communication between Dev1 and CEO's machine

Can we explain why this is anomalous?

Underneath Context Graph

Dev1 frequent connects to service DB2. CE0's machine frequently connects to DB2.

Subgraph Patterns for Attack Detection

- Well studied and motivated in the literature
- Determine if two machines are connected in attacker-victim, controller-target relationship

1. Joslyn, C., Choudhury, S., Haglin, D., Howe, B., Nickless, B. and Olsen, B., 2013, June. Massive scale cyber traffic analysis: a driver for graph database research. In First International Workshop on Graph Data Management Experiences and Systems (pp. 1-6).

2. Choudhury, S., Holder, L., Chin, G., Agarwal, K. and Feo, J., 2015. A selectivity-based approach to continuous pattern detection in streaming graphs. EDBT

t=[1,100

Bot₂

Target,

Bot,

Target

Target.

Example Case Study from Intrusion Detection

- Intrusion Detection dataset from University of New Brunswick [1]
- We build a graph representation from the network traffic data [2]

A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, "Toward developing a systematic approach to generate benchmark datasets for intrusion detection," *Computers & Security*, vol. 31, 2012.
 Chen, P.Y., Choudhury, S. and Hero, A.O., 2016, March. Multi-centrality graph spectral decompositions and their application to cyber intrusion detection. In 2016 IEEE International Conference on

2. Chen, P.Y., Choudhury, S. and Hero, A.O., 2016, March. Multi-centrality graph spectral decompositions and their application to cyber intrusion detection. In 2010 Acoustics, Speech and Signal Processing (ICASSP) (pp. 4553-4557). IEEE.

[1] [2]

Description Normal activity Normal activity Infiltrating attack and normal activity HTTP denial of service attack and normal activity Distributed denial of service attack using Botnet Normal activity Brute force SSH attack and normal activity

Significant Performance Boost from SLiCE

• We split each day's graph into training, validation and test partition

					Node2Vec			SLiCE				
Dataset	# nodes	# edges	Description		ROCAUC	F1	AUC	ROCAUC	F1	Gain (%)	AUC	Gain (%)
Day 1	5357	12887	Normal activity	Dav 1	0.799	0.7116	0.7524	0.9643	0.8988	26.30691	0.9579	27.3126
Day 2	2631	5614	Normal activity				••=.	0.0010	0.0000		0.000.0	
Day 3	3052	5406	Infiltrating attack and	Day 2	0.8518	0.7766	0.8104	0.948	0.8696	11.97528	0.9378	15.72063
			normal activity	Day 3	0 8479	0 7728	0 8248	0 9499	0.8726	12 91408	0 9431	14 34287
Day 4	8221	1250/	HTTP denial of service	Day 5	0.0475	0.1120	0.0240	0.0400	0.0720	12.51400	0.0401	14.04207
Day 4 0221	12394	attack and normal activity	Day 4	0.8016	0.6815	0.7961	0.9677	0.9169	34.54145	0.9723	22.1329	
Day 5	24062	32848	Distributed denial of	Dave	0 7007	0.0000	0 7404	0.0011	0.0004	E4 05007	0.0074	04 74074
Duy 5	24002	52040	service attack using Botnet	Day 5	0.7327	0.6202	0.7494	0.9811	0.9604	54.85327	0.9871	31.71871
Day 6	5638	13958	Normal activity	Dav 6	0.7888	0.7032	0.776	0.9667	0.9193	30,73094	0.9581	23,46649
Day 7	1738	11/02	Brute force SSH attack									
Day /	4730	11492	and normal activity	Day 7	0.785	0.6974	0.7737	0.9661	0.9216	32.14798	0.9558	23.53625
									Average Gain (F1)		Average (Gain (AUC)
										29.06713		22.60435

 Rigorous validation under more realistic settings needed before celebration but the outperformance above other baselines is very promising

- Developing graph-based ML methods
 - Moving from a single embedding per node paradigm to contextual embedding learning
 - Where can we push further?
 - ✓ Support Node and Edge Attributes

Key Insights from this Talk

- If you are a cyber-security researcher/practitioner
 - Consider using link prediction as a key method ✓ How often you need to re-train?
 - Develop domain-informed pre-training ideas ✓ Integrate existing cyber knowledge bases
- If you are interested in accelerating graph-based ML:
 - What does it mean to interleave GNNs and Transformers? ✓ Support heterogeneous networks with attributes (DataFrames)
 - How to scale up context generation?
 - \checkmark Support message-passing models for with optimizations for sparsity

Thank you

https://github.com/pnnl/SLICE

