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* Need: Given a patient’s social, clinical and mental health (history) can we
predict severity risk

* Predict from baseline admission + hospital stay for first ‘k’ days
» Predict severity as a function of look ahead (1 day, 3 days, 7 days)

* Uniqueness of our Approach:
* Transforming multi-model data sources into a unified representation learning space
» Develop a self-supervised learning prediction on that unified representation

« Case study:
= A 9-month COVID-19 dataset from Stanford University Medical Center
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ssion 82yo female with hx cad,chf htn who was recently at [**Hospital1 **] with PE presented to ew with fever/hypoxia/sob. Pt
was being tx at rehab for PNAx3 days. See admission fhpa for details pmh/hpi.

associated _with ¢

co_occurs_or_followed_by
co_occurs_or_follo

R.O.S.
Resp- Chest xray with b/l lower lobe infiltrates. Admitted on 100%nr with sats 94-98%. Pt will desat to 80's very

quickly when 02 off. Pt becoming sob with minimal activity with rr 30's. Lungs with crackles half up bilaterally. To
N t I I recieve daily lasix in am. Abg on 100% nr 92/29/7.40.
a u ra a n g u age [**Name (NI) **] Pt recieving 2 ns in ew. Bp and hr stable with adequate uo. Pt denies cp. Does c¢/o back pain. Ekg done
n n without change.
CI I n ICal n Otes [**Name (NI) **] Pt alert and orientedx3. Cooperative with care.
Id- T-max 102.6 in ew. Now down to 100.1. Cont on zosyn/vanco. Cultures pending.
Gi- Taking liquids without problem. Abdomen soft with good bowel sounds. No s/s active bleeding. Pt with elevated inr
on coumadine.
[**Name (NI) **] Pt had lived alone. Has been at rehab for past month. Daughters [**First Name8 (NamePattemn2) **]
[*“Last Name (NamePattern1) 9173**] and [**First Named (NamePattern1) 6626**] [**Last Name (NamePattern1) **] very
involved and are health care proxys. Although pt had been dnr in past is now full code and would be intubated.
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* We parse each clinical notes into a set of blocks and invoke SparkNLP
pipeline (entity extraction, assertion, relation extraction) on selected blocks

* Eventual goal is to go beyond extracting a set of entities from text

clinic

Patien fever and sore throat.

He shows no stomach pa and he maintained on epidural and PCA for pain control.
He also became short of b ath with climbing a fl gh of stairs

After CT, lung tumor located at the right lower lobe. Fathe th Alzheime

light_model = LightPipeline(model)

g%ssert ion_light (IYg

ks  \|entities | assertion
severe fever OBLEM |present
1 | sore throat OBLEM |present
2| stomach pain |F M |absent
3|an epidural | TREATMENT | present % CY
4|pca TREATMENT | present
5| pain control FIROBLEM present
6 | short of breath LEM | conditional
7|CT TEST present
lung tumor PROBLEM | present
Before 9 imer PROBLEM | associated_with_someone_else

I
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Decline/state of abuse

organ systems

Clinical notes are particularly valuable
for such information
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* We looked at most frequent risk factors each month of hospital admission
* Top-3 remain consistent over time
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Example of multiple factors: comorbidities, set of concomitant drugs,
demographics

Studying relationships between co-morbidity and concomitant drugs are an
obvious step

« Sparse coverage of condition codes (maybe logged only during change)
* High-resolution coverage of drugs
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« Comorbidity analysis can shed light on where the medical community has
learnt to treat COVID-19 patients better (or as a mix of population adapting to
COVID-19)
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Choudhury S., K. Agarwal, C.M. Ham, P. Mukherjee, S. Tang, S. Tipirneni, C. Reddy, S. Tamang, R. Rallo, V. Kocaman, 2021. "Tracking the Evolution of COVID-19 via Temporal
Comorbidity Analysis from Multi-Modal Data." In AMIA 2021 Annual Symposium (under review)
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2. Learn wmodel to

(-13th Vigit eccccccccccncccaes + t-th Visit ====cecececccccacen.. * (t+1)-th Visit ‘Pred Lot
, P(mask | context)
1. Sa mpLe “patient e
- Nausca Diagnosis level
Benzonatate Acetaminophen IV Fluid Cardiac EKG Treatment level

T
2. Mask randowm

observations

Choi, E., Xu, Z., Li, Y., Dusenberry, M.W., Flores, G., Xue, Y. and Dai, A.M., 2019. Graph convolutional transformer: Learning the graphical structure of
electronic health records. arXiv preprint arXiv:1906.04716
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Step 1: Learn Event

Representation
 Build event representation « Generate event embeddings using layer
- Encode Time output from (1)
 Self supervised event masking * Train on COVID severity as an outcome

approach to generate multiple samples
for each patient’s temporal event chain.
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 ARDS cohort (used for event representation
learning):

= Number of patients : 7983

» Total unique codes observed : 7235

*= Average stay : 16.19 days (max : 536 days )
* Max num codes in 1 day : 237

« COVID cohort

= Number of patients : 454
= Qutcome : Length of stay, binned to <=3 days

* Prediction target : Current Outcome Variable:
Will patient be discharged in next 3 days

NUMBER OF PATIENTS

[ N w B [ D
o o o o o o

o

PATIENT STAY IN NUMBER OF DAYS

1 3 5 7 9 11 13 15 17 19 22 24 28 30 34 38 42 45 49 51 55 64

NUMBER OF DAYS
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Predicting Masked Feature:

e 24 hours : 7%
12 hours : 9%
e 6 hours : 12%

Smaller aggregation intervals leading to more samples and better training

e 24 hours : 0.67
e 12 hours : 0.619
* 6 hours : 0.575

Larger aggregation intervals lead to better trajectory learning

16
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Aggregation Interval: 24 hours

Without pretraining : (average f1 score, std-dev)

 Dx_Rx codes: 0.53, 0.073
* All structured (Dx, Rx, labs, procedures): 0.54, 0.057
* All structured + demographics : 0.55, 0.044

With pretraining :

* Dx Rxonly: 0.677,0.05

* Dx_Rx_labs procedures : 0.645, 0.02

* Dx_Rx_labs procedures + demographics : 0.597, 0.02
 All structured + demographics + NLP risk factors : 0.69
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Our big idea: Neural-Symbolic Reasoning on Unified Multi-Modal Data

* Integration of clinical notes and structured electronic healthcare records data into a
unified symbolic representation and develop neural-symbolic methods on top of it

= We use SparkNLP for transforming clinical notes into this realm

@ Discover unique insights by working on this Unified Representation
= Allowed us to discover where COVID-19 treatments are being more effective

v Multi-Modal prediction models can offer superior performance

» Performance of NLP-integrated model for predicting length of stay for COVID-19 patients
IS better than model using only structured data

= Bigger value is the interpretability that comes from not turning a document to a vector
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