
Co-design Center for Exascale Machine
Learning Technologies (ExaLearn)

Journal Title
XX(X):1–19
c©The Author(s) 0000

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Francis J. Alexander2, James Ang4, Jenna A. Bilbrey4, Jan Balewski6, Tiernan Casey7,
Ryan Chard1 Jong Choi3, Sutanay Choudhury4, Bert Debusschere7, Anthony M.
DeGennaro2, Nikoli Dryden8,11, J. Austin Ellis7, Ian Foster1, Cristina Garcia Cardona3,
Sayan Ghosh4, Peter Harrington6, Yunzhi Huang4, Shantenu Jha2, Travis Johnston4, Ai
Kagawa2, Ramakrishnan Kannan4, Neeraj Kumar4, Zhengchun Liu1, Naoya Maruyama8,
Satoshi Matsuoka10,9, Erin McCarthy8,12 Jamaludin Mohd-Yusof5, Peter Nugent6,
Yosuke Oyama8,9, Thomas Proffen3, David Pugmire3, Sivasankaran Rajamanickam7,
Vinay Ramakrishniah5, Malachi Schram4, Sudip K. Seal4, Ganesh Sivaraman1, Christine
Sweeney5, Li Tan2, Rajeev Thakur1, Brian Van Essen8, Logan Ward1, Paul Welch5,
Michael Wolf7, Sotiris S. Xantheas4, Kevin G. Yager2, Shinjae Yoo2, Byung-Jun Yoon2

Abstract
Rapid growth in data, computational methods, and computing power is driving a remarkable revolution in what
variously is termed machine learning (ML), statistical learning, computational learning, and artificial intelligence. In
addition to highly visible successes in machine-based natural language translation, playing the game Go, and self-
driving cars, these new technologies also have profound implications for computational and experimental science and
engineering, as well as for the exascale computing systems that the Department of Energy (DOE) is developing to
support those disciplines. Not only do these learning technologies open up exciting opportunities for scientific discovery
on exascale systems, they also appear poised to have important implications for the design and use of exascale
computers themselves, including high-performance computing (HPC) for ML and ML for HPC. The overarching goal
of the ExaLearn co-design project is to provide exascale ML software for use by Exascale Computing Project (ECP)
applications, other ECP co-design centers, and DOE experimental facilities and leadership class computing facilities.

Keywords
Machine learning, exascale computing, reinforcement learning, active learning, HPC for ML, ML for HPC

Introduction

Working closely with existing Exascale Computing
Project (ECP) applications (Alexander et al. 2020), the
Co-design Center for Exascale Machine Learning Tech-
nologies, known as ExaLearn, has undertaken a focused
co-design process targeting learning methods that are
common across these applications. These methods
include deep neural networks (DNNs) of various types
(e.g., recurrent neural networks (RNNs), convolutional
neural networks (CNNs), and generative adversarial
networks (GANs)), kernel and tensor methods, decision
trees, ensemble methods, graphical models, and rein-
forcement learning methods. To understand and guide
trade-offs in the development of exascale systems,
applications, and software frameworks, especially given

1 Argonne National Laboratory, Lemont, IL, USA
2 Brookhaven National Laboratory, Upton, NY, USA
5 Los Alamos National Laboratory, Los Alamos, NM, USA
3 Oak Ridge National Laboratory, Oak Ridge, TN, USA
4 Pacific Northwest National Laboratory, Richland, WA, USA
6 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
7 Sandia National Laboratories, Albuquerque, NM, USA
8 Lawrence Livermore National Laboratories, Livermore, CA, USA
9 Tokyo Institute of Technology, Tokyo, Japan
10 RIKEN Center for Computational Science, Kobe, Japan
11 ETH Zurich, Zurich, Switzerland
12 University of Oregon, Eugene, OR, USA

Corresponding author:
Francis J. Alexander, Brookhaven National Laboratory, PO Box
5000, Building 725, Upton, NY 11973-5000, USA

Email: falexander@bnl.gov

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

constraints related to application development costs,
application fidelity, performance portability, scalabil-
ity, and power efficiency, the ExaLearn team has
engaged directly with developers of ECP hardware,
system software, programming models, learning algo-
rithms, and applications.

The team’s deliberate focus on verification and
validation and uncertainty quantification with a solid
determination of generalization errors is key to success.
Using exascale machine learning (ML) to improve the
efficiency and effectiveness of Department of Energy
(DOE) computing resources and experimental facilities
provides a unifying principle.

ExaLearn’s goals are fourfold: 1) reduce the
development risk of ML software for ECP application
teams by investigating crucial performance trade-offs
related to implementation and application of learning
methods in science and engineering; 2) produce high-
performance implementations of learning methods; 3)
enable simple and efficient integration of those methods
with applications; and 4) contribute to the co-design of
effective exascale applications, software, and hardware.

ExaLearn is producing a Software Toolset that
is applicable to multiple problems within the DOE
mission space and has a line-of-sight to exascale
computing, i.e., it uses exascale platforms directly or
provides essential components to an exascale workflow;
does not replicate capabilities easily obtainable from
existing, widely available packages; builds in domain
knowledge wherever possible; physics-based ML and
artificial intelligence (AI) are recurring themes;
uncertainty is quantified in a predictive manner; and
is interpretable, reproducible, and based on well-
grounded mathematical methods.

For its overall focus, ExaLearn has selected four
classes of learning problems, namely using ML for
development of surrogate models, inverse solvers,
control policies, and design strategies. Each class
(detailed herein) has been demonstrated on a different
application area.

Surrogate Models

Problem Definition: Advances in computational
algorithms and hardware over the past three decades
have afforded scientists the tools to simulate nature
over a tremendous range of scales. From computing the
history of the cosmos and the explosion of supernovae
to the evolution of Earth’s climate and the properties
of materials and subatomic particles, simulations now
play a role in almost all branches of science. Despite
having access to tremendous computational resources,
scientists still are unable to explore all possible theories
or simulate phenomena at the sub-grid scale. ML

presents a unique opportunity for bridging this gap
in the form of surrogate models. However, much work
needs to be done to determine if these surrogates are
viable, unbiased replacements for such simulations and,
importantly, useful for widespread scientific use.

Answering critical questions in cosmology about
the nature of cold dark matter, dark energy, and
the inflation of the early universe requires relating
observations to simulations of virtual universes
with different cosmological parameters to beat
down the systematic uncertainties found in the
observational data. Observationally, astrophysicists
routinely make statistical measurements at the few
percent level, and almost all cosmology experiments are
dominated by systematic uncertainties. Currently, each
virtual universe requires an extremely computationally
expensive simulation. The ability to emulate these
simulations in high-fidelity and in a fraction of the
typical computational time would boost the ability to
understand the fundamental nature of the universe.
The application of deep learning techniques to
generative modeling is renewing interest in using high-
dimensional density estimators as computationally
inexpensive emulators of fully fledged simulations.
These generative surrogate models have the potential
to initiate a dramatic shift in the field of scientific
simulations, cosmology being an excellent case study.
For that shift to happen, we must study the
performance of these generators in the precision regime
needed for science applications, as well as effectively
handle the multiple petabytes (PBs) of training data
on future exascale systems.

Training Data: Cosmology data sets are particularly
challenging to manage in an ML framework as they
are quite large, record multiple gigabytes (GBs) per
snapshot in time, and evolve as a function of time over
the 13-billion-year history of the universe. Coupled
with the fact that it requires thousands of these
data sets to perform successful training, it leads to
distributed ML training that can take advantage of
a large high-performance computing (HPC) system.
Our training data are based on more than 10,000 n-
body simulations using the codes MUSIC, to initialize
the distribution of matter, and pyCOLA, to advance
particles throughout the history of the universe (Hahn
and Abel 2011; Tassev et al. 2013, 2015). The output
of these simulations is then binned into a three-
dimensional (3D) histogram of particle counts in a
cube of size 512x512x512 at four select redshifts
(points in time). Here, four cosmological parameters
are varied by 30% of their current, best measured
values: ΩM , H0, Nspec, and σ8. The data are available
at https://portal.nersc.gov/project/m3363 and

Prepared using sagej.cls



Alexander, et al. 3

via the ExaLearn data portal at petreldata.net/

exalearn/projects/cosmoflow. The simulated data,
in Figure 1, represent a 3D map of density as a function
of time and highlight the filaments and voids in the
cosmic web that composes the universe.

Figure 1. A small snapshot of one cosmology simulation
presented in Walther et al. (2019). The density of both dark
and baryonic matter in the universe is shown at roughly 2
billion years after the Big Bang. At this time, the universe’s
structure has clearly formed, showing clusters of galaxies
(red), cosmic web (blue), and cosmic voids (black).

Method: The ExaGAN code has implementations in
TensorFlow (TF) and Keras for two-dimensional (2D)
slices of the aforementioned cubes, while a 3D version
is being developed using the Livermore Big Artificial
Neural Network (LBANN). Two main summary
statistics provide useful metrics regarding the quality
of generated samples: the pixel intensity histogram and
power spectrum (the relationship between the distance
from every pixel to all other pixels, typically employed
by calculating a fast Fourier transform (FFT)). The
basic model is a simple DCGAN (Goodfellow 2016),
essentially identical to that of the original CosmoGAN
paper (Mustafa et al. 2019). Early tests have shown
that the GAN had trouble capturing the tail of
the pixel intensity distribution (i.e., the pixels with
very large values), which is heavily squashed by the
transformation s(x) used to normalize the data. Pixels
with lower values, which constitute the majority of
the structures in filaments and voids, were reasonably
captured. To ensure accuracy and useful gradients at
both regimes of the data domain, we have developed a
technique to augment the DCGAN model called multi-
channel-rescaling (hereafter MCR).

The MCR technique simply concatenates a second
image channel to the generator output, where the
second channel is a different normalization of the
data in the generated sample. The discriminator
then is trained with the 2-channel images (the same
transformation is applied to the training data). The
normalization for the second channel, which appears
to work best, simply is a linear scaling of the data,
scaled down by some large number (e.g., 1000) and fed
through a tanh function to improve numerical stability.
This method was able to improve the quality and
statistical validity of the output samples.

Figure 2. Four GAN-generated 2D slices of cosmological
simulations.

While results have been quite good (Figure 2),
the following steps have since greatly improved both
convergence and the statistics on the resultant maps.

Spectral constraints has been the most promising
addition to ExaGAN. The basic idea is to add
a constraint to the generator loss function, which
penalizes it when the generated samples have a power
spectrum that differs from the mean power spectrum
of the real data. The key to enforcing this constraint
is computing backpropagation-enabled FFTs on the
output of the generator. This is a physically motivated
constraint rather than a more traditional regularizer
found in most ML literature.

Gradient regularization, relatively standard in
training GANs, involves penalizing the magnitude
of the gradients from the discriminator to remain
bounded. Two common variants are R1 regularization,
which penalizes the discriminator gradients to remain
small when processing the real data samples, and
WGAN-GP (Wasserstein Gradient Penalty Loss), used
in conjunction with the WGAN loss function (Arjovsky
et al. 2017). Both help to stabilize the training process.

Feature matching involves penalizing the generator
to match the statistics of the intermediate feature maps

Prepared using sagej.cls



4 Journal Title XX(X)

from the discriminator on the real data, which helps
stabilize the training and prevent mode collapse.

Figure 3. Logarithmic histograms of pixel intensities from
the GAN-generated and validation cosmology data sets show
an excellent match. Higher-order statistics, such as the
power spectrum, also are in agreement.

Remaining Challenges: While 2D maps are quite
successful (Figure 3), to push on the inherent statistics
and fully measure potential biases in the generated
images will require moving to 3D. Because the training
on the cosmology data has both high computational
and memory costs, we will employ the LBANN code,
which already has shown great scaling on 3D cosmology
data sets with the CosmoFlow CNN regression-based
code. LBANN can spatially partition the training
over many graphics processing unit (GPU)-accelerated
HPC nodes, enabling the traditional robust scaling
that other HPC applications enjoy, i.e., accelerated
time to solution without a compromise in the quality
of the learned model (Van Essen et al. 2015). For
the CosmoFlow problem, LBANN is able to achieve
an order-of-magnitude improvement in prediction
quality using the full 3D data sets in training while
significantly reducing training time by exploiting a
much larger-scale system (Oyama et al. 2020). The
GAN-based surrogate models should be able to take
advantage of LBANN to an even greater degree.

Inverse Solvers

Problem Definition: Inverse problems emerge in a
variety of application domains of interest within the
DOE Office of Science, including neutron scattering
data analysis. Here, a data-driven ML approach (Fig-
ure 4) is evaluated as a replacement for traditional
model-driven, computationally expensive loop refine-
ment methods used to determine material structure

from their neutron scattering signatures. Ascertaining
the internal structures of target samples requires deter-
mination of their crystallographic symmetry classes, as
well as structural parameters such as cell lengths and
angles. The efficacy of a class-conditional ML pipeline
with a shallow classifier to predict the crystallographic
symmetry group, followed by a shallow regressor to
predict the cell lengths/angles, has been presented in
Garcia-Cardona et al. (2019). Here, we illustrate a
preliminary evaluation of two class-conditional DNN
models in addition to three integrated ML models
that predict both the symmetry and cell parameters
in a single predictive task. The remaining section
discusses training data generation, data preprocess-
ing steps, model descriptions, and preliminary perfor-
mance results. The methodologies presented can be
generalized to X-ray crystallography data analysis with
minor modifications.

Figure 4. Predictions of material structure by ExaLearn ML
models to replace time-consuming, model-driven neutron
scattering data analysis workflows.

Training Data: For this evaluation, a perovskite
called barium titanate (BaTiO3) is used as the target
material sample. Without doping, BaTiO3 exists
only in three of the 14 possible crystallographic
symmetry groups. As such, labeled training data
sets only for the tetragonal, trigonal, and cubic
crystallographic symmetry classes are created (Table
1). Then, the GSAS-II software tool (Toby and Von
Dreele 2013) is used to generate the diffraction pattern,
X, for every combination of the lattice parameters,
collectively denoted by Y , where Y represents the set
{a, b, c, α, β, γ} of unit cell lengths (a, b, c) and angles
(α, β, γ) uniformly sampled from the six-dimensional
parameter space. Each diffraction pattern X is a set of
2807 2-tuples (x, I(x)), where x is the time of flight
(ToF) sampled in the range [1,360µs, 18,919µs] and
I(x) is the corresponding GSAS-generated scattering
profile. To maintain consistency with the NOMAD-
generated experimental data against which the model

Prepared using sagej.cls



Alexander, et al. 5

predictions are subsequently validated, a parameter
specification file corresponding to the NOMAD
instrument is used for the GSAS-II tool.

Table 1. Training Data Set of Labeled Neutron Diffractions

Class Parameters Samples (n) Size

Cubic a = b = c 1000 43 MB

(predict a)

Trigonal a = b = c 160 400 6.8 GB
(predict a, α) α = β = γ 6= 90◦

Tetragonal a = b 6= c 47 719 2 GB
(predict a, c) α = β = γ = 90◦

Note that the spaces of valid cell lengths and angles
are determined by physics-driven constraint equations
corresponding to each symmetry class. Table 1 lists the
relations for the three symmetry classes in this study.
For the cubic class, a was sampled in the range [3.5,
4.5]. For the trigonal class, a was sampled in the range
[3.8, 4.2] with α in the ranges [60◦, 89.8◦] and [90.5◦,
120◦]. For the tetragonal class, a, c were sampled in the
range [3.8, 4.2].

Data Preprocessing: Background signals in neutron
detectors originate from varied sources (diffuse
scattering, air scattering, detector readout noise, etc.)
and need to be subtracted to improve the signal-to-
noise ratio. A second-order Chebyshev polynomial of
the first kind is used to model a NOMAD-specific
background signal for each experimentally observed
diffraction pattern independently. A signal threshold
in the experimental Bragg profile is adjusted so that
the area under the profile closely matches (differs by
less than 10−4) that under the Chebyshev polynomial.
This polynomial then is subtracted from the original
experimental signal. Preliminary results indicate this
method is more robust to experimental conditions than
previously used quantitative measures. In addition to
the background corrections, the x-axis (ToF) also needs
to be adjusted for better consistency between the
simulated and experimentally collected Bragg profiles.
For this, each (x, I(x)) pair in the experimental
diffraction pattern is matched with the closest ToF
from the simulated ToF (which is the same for all of the
GSAS-II-generated diffraction patterns). Finally, the
intensities, I(x), for the experimental and generated
Bragg profiles are both normalized to unity.

Models: The models evaluated here belong to two
broad categories: class-conditional (C) and integrated
(I) models. In class-conditional models, the overall
prediction is carried out in a sequence of two
independent learning tasks. In the first task, a classifier
predicts the crystallographic symmetry, and, in the
second, a regressor predicts the cell lengths/angles.
On the other hand, integrated models are designed

to predict the symmetry class and cell lengths/angles
in a single ML task, often referred to as multi-task
models. As noted, the number of symmetry classes in
this study is restricted to three (cubic, tetragonal and
trigonal) out of 14 possible in nature. Accordingly, the
integrated models predict four outputs, namely the
class label S (0: cubic, 1: tetragonal and 2: trigonal) the
lattice parameter a, the lattice parameter c, and angle
parameter α. These four predictions form the minimal
set of parameters necessary to determine the structures
of the three crystal symmetries studied (Table 1).

A one-dimensional (1D) CNN, consisting of two
convolutional layers interleaved with two (max)
pooling layers and two final fully connected layers
(with ReLU and softmax activations, respectively),
was designed, hypertuned, and trained on the GSAS-
generated training data for the classification task of
predicting the symmetry classes. This classifier forms
the basis of three models evaluated here: two C models
that use transfer learning and one I multi-task model.

In the first class-conditional transfer learned model,
denoted by C1, the features learned from the classifier
were fitted for the parameters a, c, and α by replacing
the final softmax layer with a linear layer, the ANN
regressor, and updating only the weights of this ANN
regressor during training.

The second transfer learned model, denoted by
C2, has the same architecture as C1 with the
exception that the weights of all the layers are updated
during backpropagation. The layers of C2, except the
ANN regressor, are initialized with the corresponding
weights from the fine-tuned classifier.

In the third model, an integrated model denoted by
I1, common features are concurrently learned for the
two tasks, i.e., classifier for determining symmetries
and regression for the parameters a, c and α, in a single
learning task. Because C1 and C2 are class-conditional
models, three models are separately trained for the
cubic, trigonal, and tetragonal symmetries with batch
sizes of 512 over 500 epochs. For a fair comparison, the
model I1 also is trained with the same batch size.

Another integrated model, denoted by I2, that
does not use the classifier also has been studied.
I2 is a deep learning model based on a 1D
convolutional autoencoder (CAE) architecture whose
latent representation is used as the input for a
regression model with a dense layer configuration.
Finally, a shallow integrated model, I3, that uses
random forests also is evaluated.

Results: The background-free training data (Table
1) was partitioned into a training set (80%) and
a testing set (20%) with each individual sample
normalized so its minimum intensity value was 0

Prepared using sagej.cls



6 Journal Title XX(X)

0 2000 4000 6000 8000 10000
Number of Training Batches

0.000

0.001

0.002

0.003

0.004

0.005

Lo
ss

Training
Validation

Figure 5. Training and validation loss of the classifier as a
function of the number of training batches.

(via translation) and scaled so the maximum value
was 1. Combined, there were 800/200 cubic examples
(training/testing), 128K/32K tetragonal examples,
and 38K/9.5K trigonal examples.

The classifier was trained using a balanced mini-
batch. For each minibatch, 30 samples were drawn
uniformly at random (with replacement) from the
training data for each class, yielding a minibatch of
90 examples (30 from each class). Stochastic gradient
descent (SGD) with a fixed learning rate 0.001, weight
decay of 0.005, and momentum of 0.9 was used for
training on a total of 10 000 minibatches (Figure 5).

Table 2 summarizes the performances of the models
described earlier. Models C1 and C2 report the mean
squared error (MSE) over 32 080, 9544, and 200
samples of tetragonal, trigonal, and cubic samples,
respectively. In this study, the integrated models, I2
and I3, were trained over 27.3K data samples (16%
of training data set). The integrated models were
found to outperform the class-conditional models. In
this initial evaluation, the model I2 was found to
perform the best. This model was used to predict
the symmetry class and structural parameters of
an experimentally collected Bragg profile from the
NOMAD detector in the Spallation Neutron Source
(SNS). The predicted structural parameters then were
used as inputs to GSAS-II to compute the scattering

Table 2. MSE of the different models with scale factors
† : ×10−5, ‡ : ×10−2, ∗ : ×10−4.

Trigonal Tetragonal Cubic

Model ↓ a† α‡ a∗ b∗ a∗

C1 3.55 1.660 1.950 8.14 4.71

C2 1.80 0.001 0.270 0.25 0.10

Model → I1 I2 I3

(S, a, c, α)† 1.90 1.66 12.4

pattern and compared with the experimental profile
(Figure 6).

2500 5000 7500 10000 12500 15000 17500 20000
TOF

0.0

0.2

0.4

0.6

0.8

1.0

I(T
OF

)

Experimental vs. Predicted
Experimental
Prediction

Figure 6. Comparison of prediction from the I3 model with
the experimental profile.

Next steps: In this study, the models were tested on
only three symmetry classes over a small sampling of
the overall parameter space. Training these models to
perform uniformly well across all symmetry classes and
larger volumes of the parameter space quickly becomes
a computationally challenging enterprise that requires
extreme-scale computing resources. Designing unified
models capable of accurately predicting the structural
parameters belonging to any of the 14 symmetry classes
in a single predictive task is the next goal.

Control Policies

Problem Definition: Control problems in everyday
life can be found in game playing, as well as
autonomous vehicles, robotics, and factory controls.
Meanwhile, control problems in science can be found
in simulations, experiments, and facility operations.
Complex control problems have many different possible
paths, numerous intermediate and target states,
complicated trade-offs, conditional behavior, complex
goal and subgoal relationships, nuances in the order
of actions taken, and long-term rewards that may
not be immediately obvious. These problems extend
beyond straightforward controllers and optimization
methods and require non-trivial approaches that can
be computationally intensive.

Reinforcement learning (RL) (Sutton and Barto
1998) is a useful technique for solving complex control
problems and is quite efficient for many that have been
historically intractable. RL can be used on a control
problem when mapped to a finite Markov decision
process (MDP). Within a finite MDP framework, an
agent can take actions in an environment and receive

Prepared using sagej.cls



Alexander, et al. 7

rewards while attempting to reach a target state.
This iterative, online, learning-by-doing approach is
accomplished by recording interaction experiences and
using them to create a policy. The agent consults the
policy when determining the next actions, but action
choices also can be random to reach new areas of the
search space. Policies can be DNNs, which are useful
when the number of possible actions is large and a fast
policy is needed.

This section describes the challenges of using RL to
solve control problems at scale, describes the scalable
RL framework developed by the ExaLearn Control
pillar team, and details some applications where the
framework is used along with results.

Challenges for Control Problems at Scale: As
scientific control problems become more complex,
with many more actions and a highly complex
policy network, it becomes important to support
scalable RL because more training is needed for
accurate control. This requires orchestration of
many simultaneous tasks: agents choosing actions,
learners incorporating experiences into a network,
environments (simulations) executing agent actions,
communication of experiences from agents to learners,
and communication of updated models from learners
to agents. All of this may need to take place
alongside or within exascale simulations and/or data
analytics. Furthermore, scientific applications of RL
have environments that often are computationally
intensive and require parallelization and acceleration
to run quickly during online learning. Multi-rank
environments then need to be integrated with existing
applications.

Importance Weighted Actor-Learner Architecture
(IMPALA) is one state-of-the-art distributed deep
RL framework that can be scaled up to thousands
of machines with training stability and data effi-
ciency (Espeholt et al. 2018). Scalable, distributed RL
infrastructures have been produced, notably the Ray
framework (Moritz et al. 2017). Ray uses a distributed
task-based parallel programming model and abstracts
modular and reusable components of learning algo-
rithms. However, for scientific applications running on
exascale machines, we need something easily integrated
into existing scalable, optimized application code, as
well as the ECP software stack.

EXARL Software: ExaLearn is developing the Easily
eXtendable Architecture for Reinforcement Learning
(EXARL) framework to provide scientists and non-ML
experts with a readily available, easily modifiable set
of RL components that can run in a distributed and
scalable fashion on exascale hardware. The framework

has three core components: environments, agents, and
learning workflows.

Figure 7. Overview of EXARL architecture. Each actor has a
copy of the model, which is updated in every step and used
to infer a new action given a state. The actor uses this
action to compute the next environment state and runs the
Bellman equation to generate updated data. These data are
sent back to the learner for training the target model.

The environment component is an extension of
the OpenAI gym framework that affords use of
scientific environments and can integrate with existing
exascale applications (e.g., LAMMPS or NWChem). In
addition, it will accommodate traditional OpenAI gym
environments to allow for studying the performance of
new algorithms using benchmark environments. The
agents are collections of RL algorithms with associated
neural network architectures (e.g., DQN (deep-Q
network) algorithm with multilayer perceptron (MLP)
or long short-term memory (LSTM) architecture). The
framework has registries for agents and environments
that allow users to easily retrieve the desired
components. Finally, the learning workflows are
implementations of how the agents and environments
interact with each other. Each component is easily
customized to allow users and developers the ability
to focus on their needs. For example, a domain expert
can focus on developing an environment, while an
algorithm expert can use an existing environment
to study various algorithm and learning strategies.
Each component has a default configuration setup
that is easily steered using the CANDLE Supervisor
application.

The architecture of EXARL is separated into learner
and actors (shown in Figure 7). A simple round-
robin scheduling scheme is used to distribute work
from the learner to the actors. The learner consists
of a target model that is trained using experiences
collected by the actors. Each actor consists of a model
replica, which receives the updated weights from the
learner. This model is used to infer the next action
given a state of the environment. The environment
can be rendered/simulated to update the state using
this action. In contrast to other architectures such as
IMPALA (Espeholt et al. 2018) and SEED (Espeholt
et al. 2019), each actor in EXARL independently

Prepared using sagej.cls



8 Journal Title XX(X)

stores experiences and runs the Bellman equation to
generate training data. These training data are sent
back to the learner (once enough data are collected).
By locally running the Bellman equations in each
actor in parallel, the load is equally distributed among
all actor processes. The learner distributes work by
parallelizing across episodes, and actors request work
in a round-robin fashion. Each actor runs all of the
steps in an episode to completion before requesting
more work from the learner. This process is repeated
until the learner gathers experiences from all episodes.

Figure 8. The problem of guiding block copolymer
self-annealing is mapped to a finite MDP as an application of
scalable RL.

Application-Block Copolymers: Consider, for
example, the problem of controlling the self-assembly
of block copolymers (Majewski and Yager 2016)
via temperature change during experiments at light
sources (Noack et al. 2019), (Noack et al. 2020).
A block copolymer material typically begins in a
disordered state and requires global or local heating
to induce ordering. Materials may evolve toward
generic equilibrium morphologies or become trapped in
metastable state as ordering involves passing through
multitudes of intermediate states in a complex, high-
dimensional energy landscape (Nowak and Yager
2020). Target states (especially non-equilibrium states)
can be quite difficult to reach, often requiring hundreds
of experimental trials to get right because of many
dead-end paths through the search space. We adopted
this application to demonstrate the usefulness of RL
and to exercise scalable RL (Figure 8). We mapped
this problem to RL and have been able to show
learning convergence for guiding the annealing to both
equilibrium and non-equilibrium states.

Remaining Challenges and Next Steps: Future
possible application areas include epidemiology (con-
trolling policy for pandemic guidelines), combustion,
and additive manufacturing. Future directions for the
EXARL framework include changes that enable further
scaling, such as using multiple learners, and to run
multi-process environments.

Design Strategies

Problem Definition: Scientists representing various
domains have embraced deep learning as an automated
route for experiment and simulation design, often
with the goal of producing molecular systems with
optimized properties (Figure 9). Using deep learning
or statistics for steering experimental campaigns,
known as Optimal Experimental Design (OED)
(Lookman et al. 2018) or Active Learning, relies on
the combination of AI techniques, from generative
modeling to uncertainty quantification, to form a
cohesive application. One goal in ExaLearn is to
develop illustrative examples of applying OED to
steer HPC-based simulation campaigns and develop
the knowledge base and tools needed for OED at the
exascale.

Figure 9. Step-by-step generation of a low-energy water
cluster from a higher energy structure. The ExaLearn Design
team aims to automate this design process by applying OED
to steer HPC-based simulation campaigns that can, for
example, produce a structure with optimal properties.

Motivation and Algorithmic Workflow: As
illustrated by the CANDLE project’s Supervisor
application, highly parallel distributed optimization
algorithms require near-continuous generation of new
tasks to maintain high system utilization (Wozniak
et al. 2018). Work by the Rocketsled team at Lawrence
Berkeley National Laboratory (LBNL) has illustrated
that the time required to generate new tasks for
optimization increases steadily for large problems
(Dunn et al. 2019), which could become a bottleneck
and lead to worker starvation for highly parallel
workflows.

The task generation bottleneck becomes an even
larger concern when using advanced techniques, such
as RL for enumerating tasks or OED methods that
simulate the effect of performing batch computations
in parallel (e.g., the batch active search of Jiang
et al. (2018)). As such, we examine several different
OED science applications with varying trade-offs

Prepared using sagej.cls



Alexander, et al. 9

Figure 10. Depiction of a workflow developed for generating anti-SARS-CoV-2 drug candidates. An anti-SARS database was
used to train a MPNN to predict pIC50 and a JT-VAE model. The trained MPNN was used as the scoring function in both
JT-VAE (top) and DQN-based molecular generation (bottom). Candidate molecules were screened by pIC50 and validated by
a Drug Target Binding Affinity classifier.

between simulation cost and experimental design.
Two key goals are scalability, being able to handle
the combinatorial explosion in the state-search space,
and interpretability, generating design pathways that
domain experts can reason about.
Target Science Applications: All three of the
featured science applications are based on the
determination of optimal graph structures. The
similarity between tasks allows significant re-use of the
deep learning techniques between problems, so work
can focus on exploring computational aspects of each
tasks. Herein, we describe the scientific problems and
progress in developing applications for solving each
design challenge.

Electrolyte Design. Electrolytes form the barrier
between the charged electrodes of a battery and
must simultaneously be impermeable to electrons
current and allow the free movement of charged
ions. The molecules that can provide such a barrier
yet not interact with the highly reactive electrode
materials, be non-flammable, and degrade slowly in
harsh electrochemical conditions are rare. Finding such
molecules has been a long-standing challenge problem
in DOE (Cheng et al. 2015). ExaLearn is building
a suite of ML models (Ward et al. 2019; Dandu
et al. 2020) and quantum-chemistry workflow tools
(Smith et al. 2020) to quickly estimate the outcome of

quantum-chemistry simulations and evaluate the most
valuable simulations on HPC.

Drug Molecule Design. The design of new drug
compounds with target properties is a key area of
research in generative modeling. We applied two
generative models to design drug candidates targeting
SARS-CoV-2: RL in the form of a DQN (Zhou et al.
2019)) and the junction-tree variational autoencoder
(JT-VAE) technique (Jin et al. 2018)). Figure 10
depicts the workflow. The main difference between the
two techniques is that the JT-VAE is trained on a
database of small molecules with activity for SARS,
while the DQN is trained through the RL search.
Both techniques rely on a scoring function to steer
generation. We have examined using different scoring
functions based on molecular properties, such as logP
and quantitative estimate of druglikeness (QED).

Notably, DQN was able to produce tens of thousands
of optimized candidates in the time it took JT-VAE
using Bayesian optimization to produce hundreds of
candidates. Moreover, the DQN outperformed JT-VAE
in generating higher scoring molecules. We attribute
the difference in optimization performance to JT-
VAE implicitly sampling from a distribution of drug-
like molecules and DQN having no such constraints.
The candidate molecules generated by JT-VAE have
consistently better druglikeness and synthesizability

Prepared using sagej.cls



10 Journal Title XX(X)

scores, even when those properties were not explicitly
included in the scoring function.

The RL agent uses no information about the space
of experimentally studied drug molecules during its
training process and, accordingly, finds molecules
far from it. JT-VAE implicitly uses the distribution
of molecules in its training set to bias toward
realistic molecules at the expense of generating
novel candidates. The RL-based approach lacks such
constraints and can optimize without even implicitly
regarding synthesizability or any other characteristic
not explicitly encoded in the scoring function.

Colmena Software: Future applications for OED
on HPC systems will require significant concurrency
between simulation workflows gathering new data
and AI tasks that process the data to select new
experiments. Colmena is designed to simplify the
development of such applications by providing a simple
programming interface for writing applications that
manages concurrent AI and simulation tasks. Colmena
is backed by the Parsl workflow engine (Babuji et al.
2019) that supports running tasks at all major DOE
computing centers. Colmena and the applications
ExaLearn is using to explore scaling OED to HPC are
all open source and available on GitHub (github.com/
exalearn/colmena).

Software: Molecular Graph Descriptors. We also have
examined methods for post hoc interpretation of a
neural network aimed at property prediction (Bilbrey
et al. 2020). The interpretation relies on the computa-
tion of graph-based descriptors of molecular systems.
The tools to compute these descriptors have been made
open source and available on GitHub (github.com/
exalearn/molecular-graph-descriptors).

Optimal Experimental Design Library. A central goal
of this work is to produce a software library for
OED (Pronzato 2008). This library will package a
menu of interchangeable OED algorithms, parallelized
for HPC environments, which may be chosen by a user
prior to runtime. This is needed to handle complex
OED problems involving many candidate experiments
and independent forward solver evaluations.

For context, OED is a field that combines robust
optimization with Bayesian inference. The aim is to
design a system that is optimal with respect to a given
goal on average across some uncertain parameters.
Experiments may be conducted to reveal with greater
statistical accuracy/precision what the true values of
the uncertain parameters are, but these experiments
are costly to perform. Thus, the goal is to select
the most highly informative experiments with respect
to the engineering goal. Mean Objective Cost of

Uncertainty (MOCU) (Dehghannasiri et al. 2017; Yoon
et al. 2013) is one algorithm that implements OED.
Others include entropy-based exploration strategies,
active learning, and knowledge gradient (Frazier et al.
2008; Settles 2009).

Performance and Scaling

To support the Surrogate application pillar, ExaLearn
has developed a new capability for spatially partition-
ing the training of 3D CNNs that was developed by
the scalability and performance cross-cut team. This
enables training on very large data cubes that would
otherwise be infeasible due to memory limitations.
Training on full-size data samples enables models to
learn longer-range effects than would otherwise be
possible. Due to the huge data size, we also have
developed a new data ingestion pipeline that leverages
parallel input/output (I/O) through HDF5 and MPI-
IO, as well as an in-memory distributed data store to
reduce I/O overheads.

To demonstrate its capability, we studied the impact
on the CosmoFlow 3D CNN and its associated data
set as described in the Surrogate Models section. We
studied the impact of data size and neural network
architecture choices for this problem and present
performance and scaling results, including training a
single model with up to 512 V100 GPUs. Furthermore,
we demonstrate an order-of-magnitude improvement
in the prediction quality of the CosmoFlow network
while significantly reducing training time. This work
demonstrates the benefits of training on large, high-
resolution data for surrogate models and techniques
for overcoming the associated challenges, which can be
applied to many scientific applications.

We use LBANN (Van Essen et al. 2015) to imple-
ment our approach as it has already demonstrated
good scalability for 2D spatial partitioning (Dryden
et al. 2019). We extended LBANN’s spatial parallelism
to efficiently support 3D data in hybrid-parallel train-
ing. Previous CosmoFlow network efforts have been
limited by memory to training with windowed data
samples of size 1283. Our work increases this by a factor
of 64 to 5123.

Figure 11 shows the strong scaling performance of
the CosmoFlow network with the 5123 data set. We
use global mini-batch sizes (N) of 1, 2, 4, 16 and
64 and split the network in the depth dimension. We
run the framework for four epochs with a 128-sample
subset of the data set (if the mini-batch size is smaller
than 128) or the full data set and show the median
iteration time except for the first epoch. As shown in
the figure, when the mini-batch size,N , is 16 and 64, we
achieve speedups of 1.98x with 512 GPUs (128 nodes)

Prepared using sagej.cls



Alexander, et al. 11

0 50 100 150 200 250 300

Time [ms]

I/O
Update
F. Comm.
F. Shuffle
F. Comp.
B. Comm.
B. Shuffle
B. AR
B. Comp.128

64
32
16
8

128
64
32
16

256

128
64
32

256
512

128
256
512

2048
1024

512

2048
1024

N
u

m
b

er
of

G
P

U
s

N
=

1
N

=
2
N

=
4
N

=
16N

=
64

6.1 s/s (1.48x)
10.8 s/s (2.65x)
10.7 s/s (2.62x)

7.1 s/s (1.72x)
4.1 s/s

12.1 s/s (1.50x)
21.2 s/s (2.65x)

18.3 s/s (2.28x)
13.5 s/s (1.68x)

8.0 s/s
22.4 s/s (1.43x)

37.6 s/s (2.40x)
33.7 s/s (2.15x)

26.1 s/s (1.66x)
15.7 s/s

80.5 s/s (1.30x)
131.5 s/s (2.12x)

123.1 s/s (1.98x)
86.8 s/s (1.40x)

62.1 s/s
392.2 s/s (1.77x)

316.7 s/s (1.43x)
221.1 s/s

Figure 11. Strong scaling of CosmoFlow. “F” and “B” are
forward and backward passes, respectively. N is the
mini-batch size. Bars are annotated with throughput
(samples/s) and speedup relative to the minimum setting
with the same N .

0 1 2 3 4 5 6

Time [h]

L
os

s

10−3

10−2

10−1

100

101

5.99 h

0.0441

2.52 h

0.0165

2.15 h
0.0075 2.08 h

0.0044

1283, η(0) = 5.0× 10−4 (min.)
2563, η(0) = 1.0× 10−3 (min.)
5123, η(0) = 1.0× 10−3

5123, BN, η(0) = 1.0× 10−3

Figure 12. Training/validation losses (solid/dashed lines,
respectively) and the smallest validation losses (points) of
the CosmoFlow network with four different configurations.
For 1283 and 2563, we show the minimum loss values at
each point in time for visibility.

compared to 128 GPUs (32 nodes) and 1.77x with 2048
GPUs (512 nodes) compared to 512 GPUs (128 nodes),
respectively.

Figure 12 shows training results of the CosmoFlow
network with the full-resolution data set (5123) and
split versions (1283 and 2563). We swept the initial
learning rate from 10−4 to 10−2 logarithmically and
show the results with the best. We train for 130 epochs
with a mini-batch size of 64 in every configuration
and use the 4-way partitioning (256 GPUs in total)
for the networks without batch normalization layers,
or 8-way (512 GPUs in total) for networks with
batch normalization, due to the increased memory
requirements. To account for training variance, we
show the median result of five trials with different
initial random seeds.

We observe that the test loss decreases significantly
as we increase the data set size to 0.0169 MSE
with 2563 and 0.00727 MSE with 5123 data. Adding
batch normalization improves this result to 0.00445
MSE, achieving an order-of-magnitude improvement
compared to the baseline 1283 data. At the same
time, we get of speedup from 1283 to 5123 with
the same number of GPUs and same mini-batch
size. This result implies that the CNN can be
trained with the same computing resources and data
set size but with a smaller mini-batch and small
overheads. This introduces an opportunity to keep
mini-batch sizes fixed and strong-scale onto more
GPUs for speedup. Overall, the capabilities developed
for scaling model training and improving model quality
in ExaLearn will enable new generations of data-driven
surrogate models for an expanding number of scientific
applications.

Uncertainty Quantification

While the potential for ML technologies to revo-
lutionize computational science is driving modeling
innovations across the DOE landscape, the need for
robust interrogation of these modeling approaches in
terms of errors, biases, and information quality is
becoming more urgent to establish required credibility.
The translation of parametric and model-form uncer-
tainty quantification techniques, originally designed
to address these issues in the classical hypothesis-
driven modeling setting, into the data-driven and
reduced order modeling paradigm afforded by ML tech-
niques presents a significant challenge. Probabilistic
ML methods that seek to elevate the training of neural
network models into a setting where uncertainties can
be propagated through models, e.g., Bayesian neural
networks, go some way in achieving this, albeit with
the accompanying penalty of greatly increased training
expense.

ExaLearn has explored using approximate inference
techniques to learn posterior probabilities on the
parameters of ML models in the context of combustion
modeling. In particular, submodels that feed into the
larger exascale simulations are targets for surrogate
modeling to replace repeated evaluations of expensive
kernels or queries from precomputed tabulations of
submodel outputs.

Figure 13 shows the results of training a
neural network using the Bayesian interpretation of
dropout (Gal and Ghahramani 2016) with data from
combustion flame speed models and outputs polluted
by noise as a quantity of interest. The confidence
interval on these predictions delivered by the Monte
Carlo dropout predictions enables a framework for

Prepared using sagej.cls



12 Journal Title XX(X)

Figure 13. Neural network surrogate model for combustion
submodel predictions, trained using dropout to estimate
epistemic uncertainty in model outputs (shown here at the
two standard deviation level).

evaluating different neural network architectures,
required volumes of training data, and accuracy under
extrapolation with respect to nominal predictions
and their variance—as well as the consequences of
combining model and experimental data for the
purposed of constructing holistic models.

More elaborate variational techniques for approxi-
mating the Bayesian posterior probability of neural
network parameters also have been considered for
these combustion submodels. These techniques have
been compared against fully Bayesian training using
Hamiltonian Monte Carlo sampling to interrogate the
impact of the missing correlation information ignored
by the approximate techniques. With this machinery,
we are extending the combustion system analysis to the
reduced-order modeling setting needed for simulations
of detailed chemical processes at exascale by studying
the systematics associated with constructing surro-
gates for reduced representations of detailed quan-
tities of interest using projection-based compression
of detailed model state, using principle component
analysis (Echekki and Mirgolbabaei 2015) and other
manifold learning techniques.

Software, Frameworks, and Infrastructure

Using AI applications on HPC systems provides
a set of software challenges as yet unseen with
conventional HPC applications. In particular, the need
to store and distribute training data for AI+HPC
applications and the rapidly evolving nature of “code”
and computational environments require a redesign
of the infrastructure that supports easily exchanging
ML components in an HPC environment. ExaLearn’s
Software thrust focuses on paving the way for AI

Figure 14. CosmoFlow data accessible via PetrelData.net
are indexed by key simulation parameters. All 1+ TB are
accessible via Globus (Chard et al. 2016).

on exascale systems by studying and solving these
infrastructure challenges.

Infrastructure-Sharing Training Data: Beyond
the source code, model architecture, and model weights
for an AI application, the training data for an
application must be preserved to allow for future
improvements. Algorithmic improvements leading to
more accurate, faster, or more robust ML models
cannot benefit from AI+HPC codes without the
ability to retrain the core AI application components.
Upgrading to better algorithms will never be as simple
as linking to a new training library. We have developed
a data repository hosted on Petrel (Allcock et al. 2019),
a multi-PB data store at the Argonne Leadership
Computing Facility, that forms a living archive of
training data for key DOE AI applications. As shown
in Figure 14, CosmoFlow (Mathuriya et al. 2018)
data are available at petreldata.net/exalearn/

projects/cosmoflow for ready use by the community.

The ExaLearn data infrastructure builds on the
same Globus services that back the Materials Data
Facility (MDF) (Blaiszik et al. 2019), DLHub (Chard
et al. 2019; Li et al. 2020), and other DOE-affiliated
open data projects. The web interface for the data
library, PetrelData.net, is backed by a Django web
service that provides an easily customizable route
for hosting new open data projects with many
needed features. PetrelData.net provides a search
index for each project and, where needed, controls
access to search index metadata or the data itself by
using authentication services provided through Globus
(Chard et al. 2016). It also provides an application
programming interface (API) for querying data and
supports Globus transfers from a Python SDK. In
total, the PetrelData.net service allows for data from
exascale AI to be made accessible easily to both
humans and software and will serve as the foundation

Prepared using sagej.cls



Alexander, et al. 13

Figure 15. Fusion tokamak showing edge, core, and coupling
region. Physics in the core and edge regions are solved with
different codes. Spatial coupling between the two codes takes
place in the coupling region.

for future reproducibility and innovations in AI+HPC
research.

Infrastructure-DLHub: The flexible nature at the
core of the utility of ML for scientific computing
leads to significant challenges in deploying it on
HPC systems. The source code of a scientific code’s
AI components (i.e., the weights) constantly change
as the model is (re)trained. Furthermore, the rapid
evolution of the libraries used to execute the AI
components provides development challenges. DLHub
offers a route to manage the unstable development
environment associated with AI tools rather than
relying on meticulous scientists to properly document
versions of weights, library dependencies, and any
“glue code” needed to transform data structures into
forms compatible with AI frameworks.

DLHub encapsulates AI tools into “servables” that
capture the computational environment needed to
execute the servable along with a clear definition of
the inputs and outputs for the component. Servables
are available in a registry as Docker containers that
can be shipped as complete units and integrated into
scientific codes. ExaLearn is working closely with the
development of DLHub and the project building the
backend for DLHub, funcX (Chard et al. 2020), to
create a development environment for creating and
maintaining AI components of scientific codes. Our
vision is that DLHub and PetrelData will provide an
environment that leads to a new generation of scientific
applications that rely on both AI and conventional,
physics-based computation to optimize performance on
the heterogeneous architecture of exascale HPC.

Input/Output

The advent of exascale systems will provide unprece-
dented capabilities for performing computations. These
systems will be used to run increasingly more complex
simulations at larger resolutions, as well as help expand
the use of ML techniques for scientific discovery. In
addition to the challenges of effectively using an exas-
cale system, the widening gap between computation
and I/O rates makes it more difficult to save simulation
outputs to disk for offline analysis (Foster et al. 2017).
The costs of moving data either on or off of the
system are a growing challenge to the community.
This imbalance between I/O and compute has resulted
in challenges to the simulation sciences community
in saving the results of a calculation. For the ML
community, these challenges exist where large training
data are needed to train a model. Data challenges for
ML can result from the size of the individual training
data sets, as well as the large number of training data
sets. Thousands of modestly sized files can result in
I/O issues on a supercomputer, which are optimized
for smaller numbers of large files.

In ExaLearn, we have developed an ML-enabled
technique for reducing data movement costs in a
coupled plasma physics computation being performed
by the WDMApp project. WDMApp aims to deliver a
multi-physics simulation that is coupled together at a
first-principles level. The project’s long-term goal is to
provide all physics needed to understand and predict
the performance of ITER and future fusion devices.
WDMApp’s current focus is the spatial coupling of
two gyrokinetic codes—one for the interior, or core,
of the plasma and the other for the edge region of the
plasma (Figure 15). To accomplish this coupling, the
particle distribution in each cell must be exchanged
between the two codes. For ITER-sized simulations,
moving this large amount of data will slow down
the simulation. To avoid this, a VAE called VAPOR
has been developed for the particle distribution data.
Instead of transferring large amounts of data between
the two codes, we transfer the model parameters, which
results in an effective data compression rate of up
to 60×. The reconstruction error can vary depending
on the warm dense matter (WDM) physics (degree
of turbulence, spatio-temporal resolutions, etc.). With
a single step and medium-resolution grid data, we
achieved an average of 10% root-mean-square training
error. Currently, we are focused on developing methods
for users to control the error and investigating how
reconstruction errors can affect WDM physics. This
work also connects to the ECP Co-design center
for Online Data Analysis and Reduction (CODAR)
(Foster et al. 2020).

Prepared using sagej.cls



14 Journal Title XX(X)

Proxy Applications

The performance of production applications, especially
at exascale, relies on a complex combination
of hardware architectures, runtime environments,
compilers, and algorithmic choices. Proxy applications,
small, simplified codes that are representative of larger
applications, serve as models for performance-critical
computations in larger applications and represent
a compromise between the simplicity of kernel
benchmarks and the complexity of full applications.
Proxy applications serve as important driving forces
in the architecture-system-application co-design efforts
to ensure good performance for real applications on
modern supercomputing systems.

There have been many proxy applications devel-
oped to represent scientific computing/computational
simulation-type applications, for example, Mantevo
(Heroux et al. 2009) and the ECP Proxy Application
Suite (Richards et al. 2020). However, few proxy
applications represent the workloads of data analysis
or ML applications. To address this shortcoming and
better serve as a focal point for exascale learning
technology interactions with the ECP PathForward
vendors, the ExaLearn co-design project has been
working on developing proxy applications representing
key ML areas.

One such proxy application is miniGAN (Ellis and
Rajamanickam 2020), a GAN proxy application that
has been developed as part of ExaLearn and released
through the ECP Proxy Application Suite. GANs
(Goodfellow et al. 2014; Radford et al. 2016; Creswell
et al. 2018) are DNNs that simultaneously train two
models: a generator G and a discriminator D. As
the network trains, G produces increasingly accurate
synthetic data, while D attempts to distinguish
the synthetic data from the original training data.
Important for miniGAN’s use as a proxy application,
GANs test a greater variety of layer types and training
conditions than standard convolutional or feedforward
neural networks.

Relating to specific ECP applications, miniGAN
aims to be a proxy application for related machine
applications in cosmology, such as CosmoFlow
(Mathuriya et al. 2018) and ExaGAN (Mustafa et al.
2017), and in wind energy, such as ExaWind (Sprague
et al. 2020). miniGAN models the performance for
training generator and discriminator networks. The
GAN’s generator and discriminator generate plausible
2D/3D maps and identify fake maps, respectively.
miniGAN is built on top of the PyTorch (Paszke
et al. 2017) and Horovod (Sergeev and Balso 2018)
packages and has been developed so that optimized
mathematical kernels (e.g., kernels provided by Kokkos

Kernels or vendor libraries) can be plugged into to
the proxy application to explore potential performance
improvements. miniGAN has been released as open-
source software available through the ECP Proxy
Application website (proxyapps.exascaleproject.
org/ecp-proxy-apps-suite/) and GitHub (github.
com/SandiaMLMiniApps/miniGAN). A generator is
provided to generate a data set (series of images) that
are inputs to the proxy application.

In addition to miniGAN, the ExaLearn team
(Control) has developed a microbenchmarking suite
that will be incorporated into the ECP Proxy
Application project in the near future. This proxy
application uses the simple CartPole ((Brockman et al.
2016)) environment in the EXARL framework and
allows scaling of workers and environments. This is
useful for checking MPI communications, as well as
CPU/GPU utilization as the application scales.

Conclusion

Developments in AI and ML are proceeding at light-
ning speed. The investment in research, develop-
ment, and deployment of AI/ML methods across the
globe has experienced exponential growth. In response,
the ExaLearn team has elected to focus on four
ML pillars—surrogates, control, inverse problems, and
design—with Exascale DOE applications in mind.
While we have, thus far, targeted each pillar on a single
representative problem, the end goal is to demon-
strate the integration of all four pillars toward
a solution in one application area that requires
all four types of learning. DOE applications that
can benefit from such an integration abound—from
tokamak fusion to design of combustion engines and
wind farms.

Acknowledgments

We thank the ECP leadership and our ECP colleagues from

the many other projects with whom we have interacted

throughout the ExaLearn project.

Funding

This research is supported by the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of U.S.

Department of Energy Office of Science and the National

Nuclear Security Administration. A portion of the research

was supported by JSPS KAKENHI Grant Number

JP18J22858, Japan. The research has used resources

of the Argonne and Oak Ridge Leadership Computing

Facilities, Livermore Computing Facitily, and Energy

Research Scientific Computing Center (NERSC) DOE

Office of Science User Facilities supported under Contracts

Prepared using sagej.cls



Alexander, et al. 15

DE-AC02-06CH11357, DE-AC05-00OR22725 and DE-

AC52-07NA27344 (LLNL-JRNL-XXXXXX), DE-AC02-

05CH11231, respectively.

References

Alexander F, Almgren A, Bell J, Bhattacharjee A, Chen

J, Colella P, Daniel D, DeSlippe J, Diachin L, Draeger

E, Dubey A, Dunning T, Evans T, Foster I, Francois

M, Germann T, Gordon M, Habib S, Halappanavar

M, Hamilton S, Hart W, Huang Z, Hungerford A,

Kasen D, Kent PRC, Kolev T, Kothe DB, Kronfeld

A, Luo Y, Mackenzie P, McCallen D, Messer B,

Mniszewski S, Oehmen C, Perazzo A, Perez D, Richards

D, Rider WJ, Rieben R, Roche K, Siegel A, Sprague

M, Steefel C, Stevens R, Syamlal M, Taylor M,

Turner J, Vay JL, Voter AF, Windus TL and Yelick

K (2020) Exascale applications: Skin in the game.

Philosophical Transactions of the Royal Society A

378(2166): 20190056.

Allcock WE, Allen BS, Ananthakrishnan R, Blaiszik B,

Chard K, Chard R, Foster I, Lacinski L, Papka ME and

Wagner R (2019) Petrel: A programmatically accessible

research data service. In: Practice and Experience in

Advanced Research Computing. pp. 1–7.

Arjovsky M, Chintala S and Bottou L (2017) Wasserstein

GAN. arXiv e-prints : arXiv:1701.07875.

Babuji Y, Woodard A, Li Z, Katz DS, Clifford B,

Kumar R, Lacinski L, Chard R, Wozniak JM,

Foster I, Wilde M and Chard K (2019) Parsl:

Pervasive parallel programming in Python. In:

28th International Symposium on High-Performance

Parallel and Distributed Computing. ACM. DOI:10.

1145/3307681.3325400.

Bilbrey JA, Heindel JP, Schram M, Bandyopadhyay P,

Xantheas SS and Choudhury S (2020) A look inside

the black box: Using graph-theoretical descriptors

to interpret a continuous-filter convolutional neural

network (CF-CNN) trained on the global and local

minimum energy structures of neutral water clusters.

The Journal of Chemical Physics 153(2): 024302. DOI:

10.1063/5.0009933.

Blaiszik B, Ward L, Schwarting M, Gaff J, Chard R, Pike

D, Chard K and Foster I (2019) A data ecosystem to

support machine learning in materials science. MRS

Communications 9(4): 1125–1133. DOI:10.1557/mrc.

2019.118.

Brockman G, Cheung V, Pettersson L, Schneider J,

Schulman J, Tang J and Zaremba W (2016) Openai

gym. arXiv preprint arXiv:1606.01540 .

Chard K, Tuecke S and Foster I (2016) Globus: Recent

enhancements and future plans. In: XSEDE16

Conference on Diversity, Big Data, and Science at

Scale. pp. 1–8.

Chard R, Babuji Y, Li Z, Skluzacek T, Woodard A,

Blaiszik B, Foster I and Chard K (2020) funcX: A

federated function serving fabric for science. In: 29th

ACM International Symposium on High-Performance

Parallel and Distributed Computing. DOI:10.1145/

3369583.3392683.

Chard R, Li Z, Chard K, Ward L, Babuji Y, Woodard

A, Tuecke S, Blaiszik B, Franklin M and Foster I

(2019) DLHub: Model and data serving for science.

In: International Parallel and Distributed Processing

Symposium. IEEE, pp. 283–292.

Cheng L, Assary RS, Qu X, Jain A, Ong SP, Rajput

NN, Persson K and Curtiss LA (2015) Accelerating

electrolyte discovery for energy storage with high-

throughput screening. The Journal of Physical

Chemistry Letters 6(2): 283–291. DOI:10.1021/

jz502319n.

Creswell A, White T, Dumoulin V, Arulkumaran K,

Sengupta B and Bharath AA (2018) Generative

Adversarial Networks: An Overview. IEEE Signal

Processing Magazine DOI:10.1109/MSP.2017.2765202.

Dandu N, Ward L, Assary RS, Redfern PC, Narayanan B,

Foster IT and Curtiss LA (2020) Quantum-chemically

informed machine learning: Prediction of energies of

organic molecules with 10 to 14 non-hydrogen atoms.

The Journal of Physical Chemistry A 124(28): 5804–

5811. DOI:10.1021/acs.jpca.0c01777.

Dehghannasiri R, Xue D, Balachandran PV, Yousefi MR,

Dalton LA, Lookman T and Dougherty ER (2017)

Optimal experimental design for materials discovery.

Computational Materials Science 129: 311–322.

Dryden N, Maruyama N, Benson T, Moon T, Snir M

and Van Essen B (2019) Improving strong-scaling of

CNN training by exploiting finer-grained parallelism.

In: International Parallel and Distributed Processing

Symposium.

Dunn A, Brenneck J and Jain A (2019) Rocketsled:

A software library for optimizing high-throughput

computational searches. Journal of Physics: Materials

2(3): 034002. DOI:10.1088/2515-7639/ab0c3d.

Echekki T and Mirgolbabaei H (2015) Principal component

transport in turbulent combustion: A posteriori

analysis. Combustion and Flame 162(5): 1919–1933.

Ellis J and Rajamanickam S (2020) miniGAN.

https://proxyapps.exascaleproject.org/app/minigan/.

Espeholt L, Marinier R, Stanczyk P, Wang K and Michalski

M (2019) SEED RL: Scalable and efficient deep-RL

with accelerated central inference. arXiv preprint

arXiv:1910.06591 .

Espeholt L, Soyer H, Munos R, Simonyan K, Mnih V, Ward

T, Doron Y, Firoiu V, Harley T, Dunning I et al. (2018)

Prepared using sagej.cls



16 Journal Title XX(X)

Impala: Scalable distributed deep-RL with importance

weighted actor-learner architectures. arXiv preprint

arXiv:1802.01561 .

Foster I, Ainsworth M, Allen B, Bessac J, Cappello F, Choi

JY, Constantinescu E, Davis PE, Di S, Di W, Guo H,

Klasky S, Kleese Van Dam K, Kurc T, Malik A, Mehta

K, Mueller K, Munson T, Ostouchov G, Parashar M,

Peterka T, Pouchard L, Tao D, Tugluk O, Wild S, Wolf

M, Wozniak J, Xu W, and Yoo S (2017) Computing just

what you need: Online data analysis and reduction at

extreme scales. In: European Conference on Parallel

Processing. pp. 3–19.

Foster I, Ainsworth M, Bessac J, Cappello F, Choi J, Di S,

Gok AM, Guo H, Huck KA, Kelly C, Klasky S, Kleese

van Dam K, Liang X, Mehta K, Parashar M, Peterka

T, Pouchard L, Shu T, van Dam H, Wozniak JM, Wolf

M, Xu W, Yakushin I, Yoo S and Munson T (2020)

Online data analysis and reduction: An important co-

design motif for extreme-scale computers. International

Journal of High-Performance Computing Applications

in press.

Frazier PI, Powell WB and Dayanik S (2008) A knowledge-

gradient policy for sequential information collection.

SIAM Journal on Control and Optimization 47(5):

2410–2439.

Gal Y and Ghahramani Z (2016) Dropout as a Bayesian

approximation: Representing model uncertainty in deep

learning. In: International Conference on Machine

Learning. pp. 1050–1059.

Garcia-Cardona C, Kannan R, Johnston T, Proffen T, Page

K and Seal SK (2019) Learning to Predict Material

Structure from Neutron Scattering Data. In: IEEE

International Conference on Big Data. pp. 4490–4497.

DOI:10.1109/BigData47090.2019.9005968.

Goodfellow I (2016) NIPS 2016 Tutorial: Generative Adver-

sarial Networks. arXiv e-prints : arXiv:1701.00160.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-

Farley D, Ozair S, Courville A and Bengio Y (2014)

Generative adversarial nets. In: Ghahramani Z, Welling

M, Cortes C, Lawrence ND and Weinberger KQ (eds.)

Advances in Neural Information Processing Systems 27.

pp. 2672–2680. URL http://papers.nips.cc/paper/

5423-generative-adversarial-nets.pdf.

Hahn O and Abel T (2011) Multi-scale initial conditions

for cosmological simulations. Monthly Notices of the

Royal Astronomical Society 415(3): 2101–2121. DOI:

10.1111/j.1365-2966.2011.18820.x.

Heroux MA, Doerfler DW, Crozier PS, Willenbring JM,

Edwards HC, Williams A, Rajan M, Keiter ER,

Thornquist HK and Numrich RW (2009) Improving

Performance via Mini-applications. Technical Report

SAND2009-5574, Sandia National Laboratories.

Jiang S, Malkomes G, Abbott M, Moseley B and Garnett

R (2018) Efficient nonmyopic batch active search. In:

Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-

Bianchi N and Garnett R (eds.) Advances in Neural

Information Processing Systems 31. pp. 1099–1109.

Jin W, Barzilay R and Jaakkola TS (2018) Junction

tree variational autoencoder for molecular graph

generation. CoRR abs/1802.04364. URL http://

arxiv.org/abs/1802.04364.

Li Z, Chard R, Ward L, Chard K, Skluzacek TJ, Babuji

Y, Woodard A, Tuecke S, Blaiszik B, Franklin MJ

and Foster I (2020) DLHub: Simplifying publication,

discovery, and use of machine learning models in

science. Journal of Parallel and Distributed Processing

in press.

Lookman T, Eidenbenz S, Alexander F and Barnes C

(2018) Materials Discovery and Design: By Means

of Data Science and Optimal Learning, volume 280.

Springer.

Majewski PW and Yager KG (2016) Rapid ordering

of block copolymer thin films. Journal of Physics:

Condensed Matter 28(40): 403002. DOI:10.1088/

0953-8984/28/40/403002. URL https://doi.org/10.

1088%2F0953-8984%2F28%2F40%2F403002.

Mathuriya A, Bard D, Mendygral P, Meadows L,

Arnemann J, Shao L, He S, Kärnä T, Moise D,

Pennycook SJ, Maschhoff K, Sewall J, Kumar N,

Ho S, Ringenburg MF, Prabhat and Lee V (2018)

CosmoFlow: Using deep learning to learn the universe

at scale. In: SC’18. IEEE Press.

Moritz P, Nishihara R, Wang S, Tumanov A, Liaw R, Liang

E, Elibol M, Yang Z, Paul W, Jordan MI and Stoica

I (2017) Ray: A distributed framework for emerging ai

applications.

Mustafa M, Bard D, Bhimji W, Lukic Z, Al-Rfou R

and Kratochv́ıl J (2017) CosmoGAN: Creating high-

fidelity weak lensing convergence maps using generative

adversarial networks. Computational Astrophysics and

Cosmology 6: 1–13.

Mustafa M, Bard D, Bhimji W, Lukić Z, Al-Rfou

R and Kratochvil JM (2019) CosmoGAN: creating

high-fidelity weak lensing convergence maps using

Generative Adversarial Networks. Computational

Astrophysics and Cosmology 6(1): 1. DOI:10.1186/

s40668-019-0029-9.

Noack MM, Doerk GS, Li R, Fukuto M and Yager KG

(2020) Advances in Kriging-based autonomous x-ray

scattering experiments. Scientific Reports 10(1): 1325.

DOI:10.1038/s41598-020-57887-x. URL https://doi.

org/10.1038/s41598-020-57887-x.

Noack MM, Yager KG, Fukuto M, Doerk GS, Li R

and Sethian JA (2019) A Kriging-based approach to

Prepared using sagej.cls



Alexander, et al. 17

autonomous experimentation with applications to x-

ray scattering. Scientific Reports 9(1): 11809. DOI:

10.1038/s41598-019-48114-3. URL https://doi.org/

10.1038/s41598-019-48114-3.

Nowak SR and Yager KG (2020) Photothermally

directed assembly of block copolymers. Advanced

Materials Interfaces 7(5): 1901679. DOI:10.1002/admi.

201901679. URL https://onlinelibrary.wiley.com/

doi/abs/10.1002/admi.201901679.

Oyama Y, Maruyama N, Dryden N, McCarthy E,

Harrington P, Balewski J, Matsuoka S, Nugent P and

Van Essen B (2020) The Case for Strong Scaling in

Deep Learning: Training Large 3D CNNs with Hybrid

Parallelism. arXiv e-prints : arXiv:2007.12856.

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito

Z, Lin Z, Desmaison A, Antiga L and Lerer A (2017)

Automatic differentiation in pytorch. In: NIPS-W.

Pronzato L (2008) Optimal experimental design and some

related control problems. Automatica 44(2): 303–325.

Radford A, Metz L and Chintala S (2016) Unsupervised

representation learning with deep convolutional gener-

ative adversarial networks. In: ICLR. pp. 1–16. DOI:

10.1007/s11280-018-0565-2.

Richards D, Aaziz O, Cook J, Kuehn J, Moore S, Pruitt

D, Vaughan C and Watson G (2020) Quantitative

performance assessment of proxy apps and parents.

Technical Report Milestone ADCD-504-9.

Sergeev A and Balso MD (2018) Horovod: Fast and easy

distributed deep learning in TensorFlow. arXiv preprint

arXiv:1802.05799 .

Settles B (2009) Active learning literature survey. Technical

report, University of Wisconsin-Madison Department

of Computer Sciences.

Smith DGA, Altarawy D, Burns LA, Welborn M, Naden

LN, Ward L, Ellis S, Pritchard BP and Crawford TD

(2020) The MolSSI QCArchive project: An open-source

platform to compute, organize, and share quantum

chemistry data. WIREs Computational Molecular

Science DOI:10.1002/wcms.1491.

Sprague MA, Ananthan S, Vijayakumar G and Robinson

M (2020) ExaWind: A multifidelity modeling and

simulation environment for wind energy. Journal of

Physics: Conference Series 1452: 012071. DOI:10.1088/

1742-6596/1452/1/012071.

Sutton RS and Barto AG (1998) Reinforcement learning:

An introduction, volume 1. MIT.

Tassev S, Eisenstein DJ, Wand elt BD and Zaldarriaga M

(2015) sCOLA: The n-body COLA method extended to

the spatial domain. arXiv e-prints : arXiv:1502.07751.

Tassev S, Zaldarriaga M and Eisenstein DJ (2013)

Solving large scale structure in ten easy steps with

COLA. Journal of Cosmology and Astroparticle

Physics 2013(6): 036. DOI:10.1088/1475-7516/2013/

06/036.

Toby BH and Von Dreele RB (2013) GSAS-II: The genesis

of a modern open-source all purpose crystallography

software package. Journal of Applied Crystallography

46(2): 544–549.

Van Essen B, Kim H, Pearce R, Boakye K and

Chen B (2015) LBANN: Livermore Big Artificial

Neural Network HPC toolkit. In: Workshop on

Machine Learning in High-Performance Computing

Environments, MLHPC ’15. New York, NY, USA:

Association for Computing Machinery. ISBN

9781450340069. DOI:10.1145/2834892.2834897. URL

https://doi.org/10.1145/2834892.2834897.

Walther M, Oñorbe J, Hennawi JF and Lukić Z (2019)

New Constraints on IGM Thermal Evolution from the

Lyα Forest Power Spectrum. The Astrophysical Journal

872(1): 13. DOI:10.3847/1538-4357/aafad1.

Ward L, Blaiszik B, Foster I, Assary RS, Narayanan

B and Curtiss L (2019) Machine learning prediction

of accurate atomization energies of organic molecules

from low-fidelity quantum chemical calculations. MRS

Communications 9(3): 891–899. DOI:10.1557/mrc.

2019.107.

Wozniak JM, Jain R, Balaprakash P, Ozik J, Collier NT,

Bauer J, Xia F, Brettin T, Stevens R, Mohd-Yusof J,

Cardona CG, Essen BV and Baughman M (2018) CAN-

DLE/supervisor: A workflow framework for machine

learning applied to cancer research. BMC Bioinfor-

matics 19(S18). DOI:10.1186/s12859-018-2508-4.

Yoon BJ, Qian X and Dougherty ER (2013) Quantifying

the objective cost of uncertainty in complex dynamical

systems. IEEE Transactions on Signal Processing

61(9): 2256–2266.

Zhou Z, Kearnes S, Li L, Zare RN and Riley P (2019)

Optimization of molecules via deep reinforcement

learning. Scientific Reports 9(1): 10752. DOI:10.1038/

s41598-019-47148-x.

Author biographies

Francis J. Alexander is Deputy Director of the
Computational Science Initiative at Brookhaven
National Laboratory.

James Ang is Chief Scientist for computing at Pacific
Northwest National Laboratory.

Jan Balewski is a PDSF Consultant in the Data
Science Engagement Group at Lawrence Berkeley
National Laboratory.

Jenna A. Bilbrey is a Research Scientist in the
National Security Directorate at Pacific Northwest

Prepared using sagej.cls



18 Journal Title XX(X)

National Laboratory.

Tiernan Casey is a Senior Member of Technical Staff
in the Extreme-Scale Data Science and Analytics
department at Sandia National Laboratories.

Ryan Chard is an Assistant Computer Scientist in
the Data Science and Learning Division at Argonne
National Laboratory.

Jong Choi is a Scientist in the Scientific Data Group,
Computer Science and Mathematics Division, Oak
Ridge National Laboratory.

Sutanay Choudhury is a Senior Research Scientist in
the Physical and Computational Sciences Directorate
at Pacific Northwest National Laboratory.

Bert Debusschere is a Distinguished Member of
Technical Staff at Sandia National Laboratories.
His research focuses on assessing the confidence in
numerical simulations.

Anthony M. DeGennaro is an applied mathematician
and computer scientist at the Computational Science
Initiative of Brookhaven National Laboratory; his
research interests include reduced-order modeling,
uncertainty quantification, dynamical systems, and
machine learning.

Nikoli Dryden is a post doctoral researcher at ETH
Zurich.

J. Austin Ellis is a postdoctoral researcher in the
Scalable Algorithms Department in the Center for
Computing Research at Sandia National Laboratories.

Ian Foster is Senior Scientist and Distinguished
Fellow, and director of the Data Science and Learning
Division, at Argonne National Laboratory, and the
Arthur Holly Compton Distinguished Service Professor
of Computer Science at the University of Chicago.

Cristina Garcia Cardona is a Staff Scientist in the
Computer, Computational and Statistical Sciences
Division at Los Alamos National Laboratory.

Sayan Ghosh is a Computer Scientist in the Data
Sciences group (part of Advanced Computing,
Mathematics, and Data Division) at the Pacific
Northwest National Laboratory in Richland, WA.

Peter Harrington is a machine learning engineer at
Lawrence Berkeley National Laboratory.

Yunzhi Huang is an Electrical Engineering Researcher
in Control and Optimization group at Pacific
Northwest National Laboratory.

Shantenu Jha is the Chair of the Center for Data
Driven Discovery in the Computational Science

Initiative at Brookhaven National Laboratory, and
Professor in the Computer Engineering Department
at Rutgers University.

Travis Johnston is a Research Scientist in the
Computer Science and Mathematics Division, Oak
Ridge National Laboratory.

Ai Kagawa is an Assistant Scientist working on
optimization and machine learning at Brookhaven
National Laboratory.

Ramakrishnan Kannan is a Computational Data
Scientist in the Computer Science and Mathematics
Division, Oak Ridge National Laboratory.

Neeraj Kumar is a Computational Data Scientist
in the Earth and Biological Sciences Directorate at
Pacific Northwest National Laboratory.

Zhengchun Liu is an Assistant Computer Scientist in
the Data Science and Learning Division at Argonne
National Laboratory.

Naoya Maruyama was a Computer Scientist in the
Center for Applied Scientific Computing at Lawrence
Livermore National Laboratory and is now a researcher
at Nvidia.

Satoshi Matsuoka is the Director of the RIKEN
Center for Computational Science (R-CCS) and a Full
Professor at the Global Scientific Information and
Computing Center (GSIC) at the the Tokyo Institute
of Technology.

Erin McCarthy is a Ph.D. Candidate at the University
of Oregon and was a summer intern at Lawrence
Livermore National Laboratory.

Jamaludin Mohd-Yusof is a Scientist in the Computer,
Computational and Statistical Sciences Division at Los
Alamos National Laboratory, where he develops novel
algorithms and applications for high performance
computing and emerging architectures.

Peter Nugent is a Senior Staff Scientist at Lawrence
Berkeley National Laboratory where he is the
Department Head for Computational Science and
Division Deputy for Scientific Engagement in the
Computational Research Division.

Yosuke Oyama is a Ph.D. candidate at Tokyo
Institute of Technology and summer intern at
Lawrence Livermore National Laboratory.

Thomas Proffen is the Director of the High
Performance Computing and Data Analytics Science
Initiative of the Neutron Science Directorate at Oak
Ridge National Laboratory.

David Pugmire is a Senior Scientist in the Scientific
Data Group, Computer Science and Mathematics

Prepared using sagej.cls



Alexander, et al. 19

Division at Oak Ridge National Laboratory.

Sivasankaran Rajamanickam is a principal member of
technical staff in the Scalable Algorithms Department
in the Center for Computing Research at Sandia
National Laboratories.

Vinay Ramakrishniah is a staff scientist with a
background in Electrical and Computer Engineering;
his research interests include high-performance
computing, artificial intelligence, antenna theory,
signal processing, and optimizations.

Malachi Schram is a Senior Research Scientist and the
leads the Data Science Architecture and A.I. team in
the Physical and Computational Sciences Directorate
at Pacific Northwest National Laboratory.

Sudip K. Seal is a Senior Researcher in the Computer
Science and Mathematics Division at Oak Ridge
National Laboratory.

Ganesh Sivaraman is an Assistant Computer Scientist
in the Data Science and Learning Division at Argonne
National Laboratory.

Christine Sweeney is a Scientist working in the areas
of exascale computing, machine learning, and light
source experiment data analytics workflows at Los
Alamos National Laboratory.

Li Tan is an Assistant Computer Scientist in the
Computational Science Initiative at Brookhaven
National Laboratory.

Rajeev Thakur is a Senior Scientist and Deputy
Director of the Data Science and Learning Division at
Argonne National Laboratory.

Brian Van Essen is the Informatics Group Leader
in the Center for Applied Scientific Computing at
Lawrence Livermore National Lab.

Logan Ward is an Assistant Computer Scientist in
the Data Science and Learning Division at Argonne
National Laboratory.

Paul Welch is a Scientist in the Theoretical Division
at Los Alamos National Laboratory; his background is
in the theory and modeling of polymers, with a focus
on nanomaterials and non-equilibrium phenomena.

Michael Wolf manages the Scalable Algorithms
Department in the Center for Computing Research at
Sandia National Laboratories.

Sotiris S. Xantheas is a Laboratory Fellow in
the Advanced Computing, Mathematics and Data
Division at Pacific Northwest National Laboratory in
Richland, WA and an Affiliate Professor, UW-PNNL
Distinguished Faculty Fellow in the Department of
Chemistry at the University of Washington in Seattle,

WA, USA.

Kevin G. Yager is Group Leader for the Electronic
Nanomaterials Group in the Center for Functional
Nanomaterials at Brookhaven National Laboratory.

Shinjae Yoo is the Group Leader for the Machine
Learning Group in the Computational Science
Initiative at Brookhaven National Laboratory.

Byung-Jun Yoon is a scientist at Brookhaven National
Laboratory and also an Associate Professor in the
Electrical and Computer Engineering Department at
Texas A&M University

Prepared using sagej.cls


