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ABSTRACT
We describe a method for the post-hoc interpretation of a neural network (NN) trained on the global and local minima of neutral water
clusters. We use the structures recently reported in a newly published database containing over 5 × 106 unique water cluster networks (H2O)N
of size N = 3–30. The structural properties were first characterized using chemical descriptors derived from graph theory, identifying impor-
tant trends in topology, connectivity, and polygon structure of the networks associated with the various minima. The code to generate the
molecular graphs and compute the descriptors is available at https://github.com/exalearn/molecular-graph-descriptors, and the graphs are
available alongside the original database at https://sites.uw.edu/wdbase/. A Continuous-Filter Convolutional Neural Network (CF-CNN) was
trained on a subset of 500 000 networks to predict the potential energy, yielding a mean absolute error of 0.002 ± 0.002 kcal/mol per water
molecule. Clusters of sizes not included in the training set exhibited errors of the same magnitude, indicating that the CF-CNN protocol
accurately predicts energies of networks for both smaller and larger sizes than those used during training. The graph-theoretical descriptors
were further employed to interpret the predictive power of the CF-CNN. Topological measures, such as the Wiener index, the average short-
est path length, and the similarity index, suggested that all networks from the test set were within the range of values as the ones from the
training set. The graph analysis suggests that larger errors appear when the mean degree and the number of polygons in the cluster lie further
from the mean of the training set. This indicates that the structural space, and not just the chemical space, is an important factor to consider
when designing training sets, as predictive errors can result when the structural composition is sufficiently different from the bulk of those
in the training set. To this end, the developed descriptors are quite effective in explaining the results of the CF-CNN (a.k.a. the “black box”)
model.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0009933., s
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I. INTRODUCTION

The use of artificial intelligence (AI) for scientific applica-
tions has rapidly increased over the past decade. Neural networks
(NN), in particular, have proven useful for advances in domain
areas such as computer-assisted drug discovery,1 inverse materi-
als design,2 computer-aided synthesis planning,3 and most notably
as surrogate models for high-level computational methods.4–6 Such
surrogate models allow for the generation of interaction potentials
that demonstrate the accuracy of higher-level computational meth-
ods while being orders of magnitude less expensive. However, the
training of such a network requires a large amount of data generated
at the desired level of accuracy, and the more general the network,
the larger the coverage of chemical space required.

Neural networks are often viewed as “black boxes”—producing
the answer they were trained to give without any indication of how
they arrived there. Recently, efforts to interpret the learning process
of NNs have been reported.7–10 NN interpretability is often loosely
defined as any method that allows a glimpse inside the box. In this
study, we suggest a post-hoc interpretation of the performance of
a trained NN through the analysis of the network output based on
graph-theoretical descriptors of the molecular system (see Fig. 1).
By correlating descriptors based on the properties of the fitted data
with the network errors, we are able to elucidate the regions of con-
figurational space for which the trained NN has predictive power.
We focus the training of such a NN using a large database of neutral
water cluster global and local minima, recently published by some
of the authors in this study,11 and show that structural space, in
addition to chemical space, must be considered when training a NN.

Our drive for using water as an example is fueled by its impor-
tance in sustaining life on Earth through reactions in aqueous media

that have earned water the moniker of “universal solvent.” There-
fore, an understanding of the properties of water represents a neces-
sary first step toward the modeling of chemical and biological pro-
cesses in aqueous environments. Clusters of water molecules allow
for a quantitative probe of the nature and magnitude of intermolec-
ular interactions within a water network.12,13 Over the years, sev-
eral important insights have been gained through the application
of high-level ab initio methods, but the computational cost of these
methods often prohibits the study of large systems over long time
scales while maintaining a level of accuracy that produces meaning-
ful macroscopic properties compared to experiment. A number of
flexible, polarizable classical potentials for water have been devel-
oped14–18 based on the results of high-level electronic structure cal-
culations of clusters. These interaction potentials have been shown
to accurately reproduce several of the macroscopic properties of
water.19–22 At the same time, a number of machine learning (ML)
techniques have been developed for the interpolation of potential
energy surfaces (PESs).23–27

Recently, Morawietz and co-workers demonstrated the use of
neural networks to obtain high-quality potentials.28–30 Radial and
angular symmetry functions were developed as input to their neural
networks to describe the environment of each atom through consid-
eration of the position of all atoms in the system.4,31,32 Notably, these
symmetry functions satisfy the required invariance with respect to
rotation, translation, and ordering, and they are continuous and
differentiable. To create the potential, a NN was trained for each
element in the system. The energy contribution from each atom
was predicted, and the collection was summed to obtain the total
system energy. The forces were calculated analytically as the nega-
tive gradients of the energy due to the well-defined functional form
of the neural network potential. Recently, this method has been

FIG. 1. Examples of two of the descriptors (node degree and number of geometric cycles) used to assess post-hoc interpretability of a CF-CNN trained to predict the potential
energy of water clusters. The examples shown here are for two isomers of the (H2O)20 cluster contained in the database recently published by some of us.11
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incorporated in the open-source LAMMPS molecular dynamics
software program.33,34

The Behler–Parrinello method has been applied to both neu-
tral water clusters and protonated water clusters. A water cluster
potential was developed by training on ∼40 000 dispersion-corrected
density functional theory (DFT) reference computations, which
resulted in errors on the order of 2 meV/H2O.28 More recently,
the Behler–Parrinello method has been used to construct neural
network PESs for protonated water clusters based on both DFT29

and coupled-cluster30,35 reference data. The most recent of these
potentials uses DFT ab initio molecular dynamics simulations to
generate configurations, which are then refined at the CCSD(T)-
F12/VTZ level of theory. The resulting potential provides bind-
ing energies with an accuracy close to 0.1 kcal/mol. Based on
these successes, we have chosen in this study to benchmark the
accuracy of the CF-CNN against the Behler–Parrinello RuNNer
model.36

Schütt et al. built upon Behler’s atom-centered symmetry func-
tion approach, but with a key difference, namely, that the network
learns the ideal atom representation.37–39 Atom-based filters are
formed from the vectors between atoms and their neighbors, a pro-
cedure providing a unique internal representation that incorporates
symmetry and ordering invariances. The filters are learned during
training of the network, and each atom is represented by an array of
filters. The learned filters then act as features, from which convolu-
tional layers learn a representation of pair-wise interactions between
atoms in the cluster to predict the contribution of each atom to
the desired property. Altogether, this architecture is described as a
Continuous-Filter Convolutional Neural Network (CF-CNN). Mul-
tiple interaction blocks can be stacked, and because the filter gener-
ator is contained within the interaction block, the learned features
will be different for each block. The atom-wise contributions are
then summed to give the value of the desired molecular-level prop-
erty. The network employs an assignable cutoff value and function
to each atom to properly model the decay of the interaction energy
between atoms at long distances. Overall, this architecture, known
as SchNet, is able to pick up subtle changes in structure to produce
continuous energy surfaces.

Here, we use the codebase from SchNetPack39 to train a
CF-CNN that can predict the potential energy of water clusters
using a training set of 500 000 unique water cluster networks—to
our knowledge, the largest molecular training set applied to neu-
ral networks to date. The CF-CNN is able to produce energies
with a mean absolute error of 0.002 ± 0.002 kcal/mol per water
molecule.

Note that our study focuses more on the interpretation of the
accuracy of the trained NN through the development of graph-
theoretical descriptors rather than just the simple training of the
NN. Given this goal, the paper is organized as follows: In Sec. II,
we discuss our approach providing details of the generation of the
previously published water cluster network database, the definition
of the graph-theoretical descriptors used to analyze the structural
patterns of the various networks, and the details and setup of the
CF-CNN. In Sec. III, we present the results of the graph-theoretical
characterization of the water cluster network database, the optimiza-
tion of the CF-CNN training, and the interpretation of these results
using the graph-theoretical descriptors. Final conclusions are drawn
in Sec. IV.

II. APPROACH
A. Details of the database of neutral water cluster
networks

We recently published a database of networks corresponding
to the global and local minima for neutral water clusters of sizes
N = 3–30 obtained using the flexible, polarizable Thole-Type Model
(TTM2.1-F, version 2.1) interaction potential for water in conjunc-
tion with the Monte Carlo Temperature Basin Paving (MCTBP)
sampling method.11 The database contains over 5 × 106 local min-
ima that lie within 5 kcal/mol from the putative minimum for each
cluster size.

The TTM2.1-F interaction potential is a many-body, flexi-
ble, polarizable potential with parameters derived from high-level
ab initio calculations.14,15 MCTBP is a global optimization method
that aims to improve the convergence rate of global optimization
techniques such as basin hopping,40 with the algorithmic details pre-
sented elsewhere.41,42 In short, all possible energies for the system
of interest are split into finely spaced bins. Each of these bins are
given a parameter, conceptually referred to as the temperature. This
temperature controls the acceptance criteria for Monte Carlo moves.
That is, for a single step from a bin with energy Eold and inverse
temperature βold = 1/kTold to a bin with energy Enew, the acceptance
condition for this move is

min (1, exp(−βold(Enew − Eold))). (1)

This sampling method tends to decrease the number of times one
revisits the same structure by increasing the temperature associated
with a particular bin each time that bin is visited.

B. Graph-theoretical descriptors
NNs depend on exposure to numerous examples of the desired

subset of configuration space to predict the behavior of new candi-
dates in that space. As the configuration space in question grows,
the number of structures in the training set must also increase.
The configuration space examined here is defined by hydrogen-
bonded networks present in water clusters, which exhibit rich struc-
tural diversity. To gain an understanding of the configuration space
of these water clusters, we characterize the full database of over
5 × 106 structures using graph-theoretical descriptors. The natu-
ral invariances present in chemistry (translational, rotational, and
atom ordering) thus correspond to invariances under isomorphism
of the corresponding molecular graph.43 Therefore, a chemical sys-
tem is represented by a set of isomorphic graphs, and conversely,
each isomorphic set represents a single chemical system. An excep-
tion is stereoisomers, which have isomorphic graphs because 3-
dimensional information is lost upon conversion to a graph-based
representation.

When generating the molecular graphs from the Cartesian
coordinates provided in the database, we determine the connectiv-
ity using the definition of a hydrogen bond given by Kumar et al.44

in which the hydrogen bond is parameterized by a distance r and
an angle ψ, where r is the distance between a hydrogen atom and
its neighboring oxygen and ψ is the angle between the O–H vec-
tor and the vector normal to the plane formed by the molecule
receiving the hydrogen bond. This definition comports with the
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FIG. 2. Structure (left), all-atoms graph (middle), and projected graph (right) for the
lowest-energy water cluster of size N = 10.

idea that electron density is donated from an O–H bond into a π∗
orbital of the receiving water molecule. Each cluster is transformed
into an all-atoms graph and a projected graph describing the oxy-
gen atom frame (see Fig. 2). Specifically, in the all-atoms graph,
each atom is represented by a node and the edges represent the
covalent and hydrogen bonds present in the cluster, while in the
projected graph, each water molecule is a node and the edges repre-
sent the hydrogen-bond network. The collection of graphs is avail-
able alongside the original database of Cartesian coordinates and
relative energies at https://sites.uw.edu/wdbase/, whereas the code
to generate the graphs and compute the descriptors is available at
https://github.com/exalearn/molecular-graph-descriptors.

Both of these graph representations have been used successfully
in the past for various applications. For instance, projected graphs
can be employed for the complete enumeration of all digraphs cor-
responding to a particular oxygen frame. This analysis has been
performed for all 30 026 hydrogen-bond networks of the pentagonal
dodecahedron structure of (H2O)20.45–48 Notably, this quantified the
energy difference of the highest- and lowest-energy arrangements of
hydrogen-bond networks that obey the Bernal–Fowler rules to be
on the order of 35 kcal/mol.45,46 This result is important for locat-
ing low-energy structures of water clusters of a particular size. That
is, because the number of digraphs corresponding to a particular
projected graph increases exponentially with the number of water
molecules in the network, searches for low-energy structures must
include the examination of oxygen frames that could correspond
to low-energy structures as well as the particular arrangement of
hydrogen bonds. This arrangement could be composed of thou-
sands or even millions of unique digraphs, one of which gives the
lowest-energy structure within the specific oxygen frame. Therefore,
as N increases past 20, it becomes extremely difficult to confidently
identify the global minimum structure. Due to the density of this
manifold of states, it is not clear whether the true global mini-
mum is of utmost importance as many structures will be thermally
populated even at low temperatures.

Graph-based representations allow for the fast quantification
of physical metrics, such as the number of atoms or water molecules
(by counting the number of nodes), the number of hydrogen bonds
(by counting the number of edges in the projected graph), and the
number of dangling hydrogen atoms (by counting the number of
nodes with less than four neighbors in the all-atoms graph). If a
water molecule is not actually bound to the cluster, there will be a
node with zero neighbors in the projected graph, making this repre-
sentation a convenient way to determine when computations fail to
produce a fully connected hydrogen-bond network.

Shared characteristics between two chemical systems can be
quantified as a single value by computing the similarity of the cor-
responding graphs. In this work, we use the eigenvalue method to
compute the similarity of two graphs.49 This metric relies on the
eigenvalue (λ) of the Laplacian of each graph, defined as the diag-
onal matrix of the degrees minus the adjacency matrix of the graph.
The similarity s of graphs 1 and 2 is then computed as

s =
k

∑
i=1
(λ1i − λ2i)

2, (2)

where k represents the top k eigenvalues that contain 90% of the
energy (note that this is the graph energy and not the energy of the
molecular system). This metric is unbounded, [0,∞), where isomor-
phic graphs will show s = 0, with s increasing to infinity as the graphs
become more dissimilar.

To compare networks within a specific cluster size, we compute
s against the lowest-energy cluster of that size given in the database.
Among the all-atoms graphs, each cluster will have a different value
of s, although some may be very close. However, among the pro-
jected graphs, clusters with the same oxygen framework will have
identical values of s. In this way, unique oxygen families within a
cluster size can be identified.

Translating the Cartesian coordinates of the clusters into
graphs also allows us to compute standard graph-based metrics.
Two useful topological metrics are (i) the average shortest path
length and (ii) the Wiener index. The average shortest path length
is defined as the average number of steps along the shortest path
between each pair of nodes, while the Wiener index is defined as
the sum of the shortest path lengths between all non-hydrogen
atoms. These two metrics are similar but have a key difference:
the Wiener index will always grow with system size, while the
average shortest path length will not. In conjunction, the two
metrics provide information about the connectivity of the clus-
ter. In this work, both metrics are computed for the projected
graphs.

We also calculate the degree of each node, which is simply the
number of edges connected to that node, on the projected graph
to give an indication of the connectivity of the hydrogen-bond net-
work. In the system under study, fully connected nodes have a degree
of 4, although in some cases, a degree of 5 is observed, as it has
been shown that a water molecule can accept up to three hydrogen
bonds while still donating two.11 A holistic view of the connectiv-
ity of the full cluster can be obtained by averaging the degree of all
nodes in the graph, while the regularity of the cluster can be exam-
ined by calculating the variance in the degrees of all nodes in the
graph.

Finally, we compute geometric shapes (polygons) present in
the water clusters through the use of their projected graphs. Here,
we compute the number of 3–6-membered rings in each cluster.
This is accomplished through a depth-first search of the number of
rings associated with each node. Fused rings are discounted by only
considering non-chordal graphs in which the degree of each node
in the ring subgraph is 2. For example, a fused 5-membered ring is
considered to be composed of one trimer and one tetramer; if one
of the water molecules contributing to the fused bond is rotated and
the bond breaks, the ring is then considered to be a pentamer (see
Fig. 3 for a visual explanation).
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FIG. 3. Visual explanation of the definition of rings in a cluster. Fused rings (shown
by the molecules on the left-hand side) are counted as the smallest component
rings. A simple rotation of a molecule resulting in the breaking of a hydrogen bond
can alter the ring topology. In this work, we counted the number of 3–6-membered
rings in the projected graph of each cluster.

C. Continuous-filter convolutional neural networks
In this section, we briefly describe the CF-CNN used in

SchNet.38 The computation graph in this architecture has two
phases. The first phase learns an atom-level representation of the
energy function, followed by an aggregation phase in the sum
pooling layer that sums all atom-level energies to predict the energy

of the overall structure. The entire computation process is visually
described in Fig. 4.

The key component in this computation is known as the inter-
action block, which is described in detail below. The interaction
block is accompanied by a number of layers that perform a series
of standard transformations.

1. Embedding layer
This layer maps each atom and its associated features into a

fixed-size vector representation. The vectors are randomly initialized
and updated through the training process.

2. Atom-wise layer
These are fully connected layers that recombine the features

of an atom from an intermediate layer by considering the con-
tribution of a feature to every other feature. This is implemented
via matrix multiplication followed by an additive bias stated as
Xt = WtXt−1 + bt , where Xt represents the intermediate features
after layer t and Wt represents the learned weight matrix.

3. Activation and pooling layers
The activation layer performs a non-linear transformation via

a shifted softplus function (Fig. 4). The shifting is shown to improve
the convergence of the model. The sum-pooling layer enables down-
sampling of the features through an additive process, aiming to
reduce the sensitivity of the output to small perturbations in the
input features.

FIG. 4. Illustration of the network architecture and atomic neighborhoods examined by the CF-CNN38 during learning. From these neighborhoods arises a representation of
the geometry of the underlying system.
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4. Interaction block
The vector representation for each atom is expressed as an iter-

ative computation similar to those employed by message-passing
neural networks. Each atom is assigned a hidden state representation
referred to as htv (for atom v and iteration t),

ht+1
v = h

t
v + ∑

w∈N(v)
faggr(v,w), (3)

where f aggr is a learned differentiable function, referred to as the
continuous-convolution filter or the filter-generation network com-
ponent.38 Given an atom v, we first identify its neighbors within
a cutoff [denoted N(v)]. The filter-generation network function is
implemented as faggr(v,w) = hw ⊛W(rv − rw).

The continuous-filter operation is designed to be rotationally
invariant. The rotational invariance is obtained by expanding the
inter-atomic distance (dvw) through N f radial basis functions ψk(∥rv
− rw∥) = exp(−γ∥dvw − μk∥2), where μk is the mean of each Gaussian
basis function located at a fixed interval ranging from 0 Å to a cutoff
value (rcutoff Å).

Finally, the interaction block is repeated a number of times
(specified by the hyperparameter N iter), which allows the representa-
tion of an atom to be updated by propagating the influence of other
atoms that are more than rcutoff away. Figure 4 illustrates how this
propagation expands in an atomistic system through each repetition
of the interaction block. For a description of the specific configura-
tions of each layer in the CF-CNN architecture, refer the reader to
Ref. 38.

D. CF-CNN setup
SchNet implementations are provided in both TensorFlow38

and PyTorch39 frameworks; however, the PyTorch implementation,
distinguished by the name SchNetPack, includes additional tools
for the prediction of PESs and other quantum-chemical proper-
ties and is the current, most-up-to-date implementation. We use
SchNetPack to train all CF-CNNs in this work.

To optimize the model, we examined training hyperparameters
such as the number of interaction blocks, the number of atom-wise
features, and the variance in the network itself, along with several
data-sampling strategies and the variance in the sampling. In these
examinations, each network was trained on ∼100 000 water clus-
ter structures taken from the published database for cluster sizes
N = 11–29 using 90 000 of the clusters to learn the weights and the
remainder to validate the learned weights during each epoch; for the
exact counts of each-size cluster in the training sets, see Table S1. The
trained networks were tested on a set of 10 500 clusters not included
in the training set from cluster sizesN = 10–30 (500 clusters per size).
Depending on the hyperparameters, each network required 11–17 h
to train when distributed over four NVIDIA V100 GPUs. Two inter-
action blocks were used during training; although Schütt et al. found
three to be the optimal number of interaction blocks in prior anal-
yses,37,38 we found two to be sufficient (see Table I and Fig. S1). A
nearest-neighbor cutoff of 6 Å was applied, as this corresponds to the
outer boundary of the second solvation shell in liquid water based
on the O–O radial distribution function. Beyond this distance, water
molecules are considered to essentially be de-correlated, indicating
that their interactions are negligible. The batch size was set to 50,
and the maximum number of epochs was set to 7500, although all
training trials converged well before reaching this cutoff. Unless oth-
erwise stated, a random seed of 19 was used to obtain reproducible
initial weights for the network. After optimizing the training hyper-
parameters and sampling strategy, we trained a CF-CNN on 500 000
water clusters of size N = 11–29 and again tested on 10 500 unseen
clusters of size N = 10–30.

III. RESULTS AND DISCUSSION
A. Graph-theoretical characterization of the full water
cluster database

The similarity of each graph, as described in Sec. II B, of a cer-
tain cluster size N was computed against the lowest-energy cluster of

TABLE I. Error analysis of CF-CNNs during optimization of the number of interaction blocks, number of atom-wise features, and strategy for sampling from the database. Each
network was trained on ∼100 000 water clusters of size N = 11–29. From the full training set, 90 000 clusters were used to learn the network weights, and the remainder were
used to validate the weights during training; the test set consisted of 10 500 clusters of size N = 10–30. The mean absolute error (MAE) and root mean squared error (RMSE) of
the validation and test sets for the final model are given.

Interaction Atom-wise Sampling Training Validation Validation Validation
blocks features strategy loss loss MAE RMSE Test MAE Test RMSE

1 100 Even 0.0281 0.0290 0.1282 0.1704 0.1246 0.1678
2 100 Even 0.0061 0.0091 0.0690 0.0953 0.0682 0.0941
3 100 Even 0.0035 0.0082 0.0650 0.0908 0.0648 0.0905

2 50 Even 0.0172 0.0189 0.1013 0.1373 0.0994 0.1351
2 100 Even 0.0061 0.0091 0.0690 0.0953 0.0682 0.0941
2 200 Even 0.0020 0.0096 0.0705 0.0982 0.0692 0.0967
2 500 Even 0.0002 0.0201 0.1014 0.1418 0.1018 0.1424

2 100 Even 0.0061 0.0091 0.0690 0.0953 0.0682 0.0941
2 100 Linear 0.0079 0.0112 0.0792 0.1060 0.0695 0.0955
2 100 Exponential 0.0088 0.0132 0.0869 0.1151 0.0708 0.1404
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that size present in the database. By examining the range of sim-
ilarity values of the all-atoms graphs and the projected graphs of
each cluster, we obtain a sense of the structural diversity present
in the dataset. As discussed earlier, the set of all-atom graphs that
correspond to a particular projected graph (or oxygen frame) can
be highly dissimilar in relative energy. Correspondingly, the all-
atoms graphs show a wide range of similarity values even with an
oxygen frame family. Meanwhile, the similarity values of the pro-
jected graphs show variations in the oxygen frame families present
in the database. Figure 5 shows the similarity plotted against the pro-
jected similarity of clusters of each cluster size N. The N = 16 group
appears to have the largest amount of structural diversity according
to the range of similarity and projected similarity values. Notably,
although the N = 25 and N = 26 groups contain the largest num-
ber of unique clusters, their structural diversity is comparatively
low. The exponential increase in unique digraphs for each oxygen
frame may explain the reduced diversity as N increases, indicating
that certain oxygen frame families are more energetically stable.

We next examine the topological diversity of clusters in the
dataset. Figure 6 (top) shows a plot of the Wiener index vs the
average shortest path length computed on the projected graphs of
all clusters in the database. A clear pattern emerges in which each
cluster size falls along a separate line with a distinct slope. Because
these two metrics have similar forms, the slope is 2/N(N − 1),

which is the inverse of the number of pairs in the system. There-
fore, the slope decreases as the cluster size increases until reaching
0 for an infinite-sized system. The Wiener index is an extensive
property that increases exponentially with cluster size (shown in
the bottom right of Fig. 6), while the average shortest path length
is not an extensive property and, in this system, appears to be
converging to a maximum value (bottom left of Fig. 6). Networks
are considered “regular” when each node is connected to a fixed
number of nodes, a scenario that is assumed to be the case in
large, low-temperature water clusters, in which each water molecule
has a roughly tetrahedral arrangement. Small-world networks lie
between random networks and regular networks; in other words,
small-world networks are regular graphs in which an amount of
disorder has been introduced.50 Such systems have the high clus-
tering characteristics of regular lattices but the small path lengths
of random graphs. This plot appears to show characteristics of
a small-world pattern in which the typical distance between two
nodes (quantified by the average shortest path length) grows pro-
portionally to the logarithm of the number of nodes in the network.

Another useful measure of connectivity in a graph is the mean
degree. The degree is computed for each node in the graph, and the
mean gives a single descriptor for the full graph. Figure 7 shows
the mean degree for the projected graph of all clusters of a certain
size, with the standard deviation indicated by the shaded region. The

FIG. 5. Illustration of the structural diversity in the full database as described by the similarity and projected similarity for each cluster size N in the database. The values
for each cluster are computed against the lowest-energy structure of the same size N. The similarity is computed for the all-atoms graphs, and the projected similarity is
computed for the projected graph. All subplots share the same x- and y-axes for convenient visualization.
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FIG. 6. Top panel: plot of the Wiener
index vs the average shortest path length
for the full database. Bottom panel: plots
of the average shortest path length (left)
and Wiener index (right) vs energy com-
puted at the TTM2.1-F level. In all plots,
each point is colored by cluster size
and plotted with 0.2 opacity such that
the color value represents the density of
structures.

connectivity starts quite low due to the limited geometries avail-
able in small clusters and increases in a logarithmic fashion until
around 3.5. This trend comports to the average connectivity in liq-
uid water, which is ∼3.8 hydrogen bonds per water molecule.44

Interestingly, even though the database contains a greater number
of large-size clusters, the standard deviation in the mean degree
(denoted by the shaded region in Fig. 7) narrows as the clus-
ter size increases. We believe that this is due to the increasingly
“liquid-like” networks in large size clusters, which exhibit fully con-
nected networks. The lowest energy structures of N = 3–5 have
a degree of 2, following the known stability of the homodromic
trimer, tetramer, and pentamer clusters.51 After that cluster size, the
mean degree of the 1% lowest-energy clusters increases and tends to
have slightly higher-than-average values up to N = 18, after which
the mean degrees of the 1% lowest-energy structures are similar to
those of the full database. This indicates that increased connectivity
plays a role in stabilizing water clusters—a fact that is well known
but it is explicitly shown here through graph descriptors.

Finally, an interesting property of the water cluster networks
is the number of polygons in the network. The number of trimers,
tetramers, pentamers, and hexamers was quantified from the pro-
jected graph of each cluster. The mean and standard deviation of
these values for each cluster size is plotted in Fig. 8. The mean
number of trimers is quite low for all cluster sizes and further
declines as N increases. The number of tetramers, pentamers, and

hexamers increases with N as expected. Consistently, there are, on
average, more pentamers than hexamers present in the clusters. To
the best of our knowledge, the earliest study that quantifies the rel-
ative number of 5-membered vs 6-membered rings in liquid water
is that of Rahman and Stillinger.52 In that work, the number of each
type of pentamer and hexamer rings was essentially the same, and

FIG. 7. Plot of the degree of the projected graph as the cluster size increases for
the full database. The blue circles represent the mean degree, and the shaded
area is the standard deviation. The orange diamonds mark the degree of the
lowest-energy structure.
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FIG. 8. Plots of the number of trimers, tetramers, pentamers, and hexamers per cluster size N in all clusters for the full database (left) and 10% of clusters with the lowest
energy (middle) and 1% lowest-energy structures (right). The mean is given as the circular marker, and the shaded area represents the standard deviation.

which ring was the maximum depended on the chosen hydrogen-
bond definition. Hexamers, rather than pentamers, are the dominant
ring structure in ice. For low N, the clusters show a propensity for
tetramers over both pentamers and hexamers. However, at N = 17, a
distinct switch occurs, which is even more prominent when examin-
ing the 10% and 1% lowest-energy clusters. At this size, the propen-
sity for tetramers decreases and their numbers grow at a slower rate
than those of pentamers and hexamers as N increases. We observed
that at N = 17, the clusters became more cage-like and highly sym-
metric structures were no longer the putative minima. This behavior
is reflected in the number of cycles, as the added internal geometry
in cage-like structures leads to the formation of additional five- and
six-membered rings.

B. Optimization of the CF-CNN training
Before performing a large-scale training, we first explored the

properties of the CF-CNN that affect its training, such as the num-
ber of atom-wise features, the strategy for sampling from the full
database to create the training set, the variance in this sampling, and
the variance in the network itself.

We found that training was highly sensitive to the number of
atom-wise features used to describe the atomic environment. When
too few features are used, the network does not have the capacity
to learn the full system; conversely, if too many features are used,
the network overfits to the training data and gives poor predictions
on the test set. Table I shows training metrics when 50, 100, 200,
or 500 features are used. The training loss decreases as the num-
ber of features increases, while the validation loss initially decreases
and then increases as the network begins to overfit. This behavior
is also reflected in the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) during the validation of the final epoch. The
validation MAE and RMSE are 0.1013 and 0.1373 when 50 features
are used, which decrease to 0.0690 and 0.0953 when the number of
features increases to 100. Further increasing the number of features
to 200 slightly increases the validation MAE and RMSE to 0.0705

and 0.0982, while greatly increasing the number of features to 500
increases the validation MAE and RMSE to 0.1014 and 0.1418, values
that are higher than those when too few features are used.

We also examined the error in the predictions on the test set
made by the networks trained with different numbers of features.
The test MAEs and RMSEs follow the same pattern and are very
close in value to the validation MAEs and RMSEs. Notably, the error
distribution is wider when too few features are used (see Fig. S2).
The distribution narrows, giving a mean of 0.0008 kcal/mol, when
100 features are used. The distribution remains narrow but shifts in
the negative direction to −0.0007 when 200 features are used and
widens when 500 features are used. This increase in error with 500
features again indicates that the network is overfitting to the train-
ing data when a large number of features are learned. Because the
network trained using 100 features gave the best validation and test
scores, we use 100 features in all further studies presented in this
work.

Next, we examined the strategy for sampling from the database
to build our training set. When building training sets for neural
networks, the data must be well distributed over the entirety of
the chemical space under examination; otherwise, the network will
not have learned the behavior of systems in the absent region and
will not produce suitable estimations of the potential energy in that
region. As the cluster size increases past N = 17, the clusters begin to
resemble cage-like structures, and the number of possible variants
with an energy of less than 5 kcal/mol from the putative minimum
increases. To examine the effect of the training set, we sampled from
each cluster size bin using three different strategies: (i) evenly, (ii)
linearly increasing as the cluster size increases, and (iii) exponen-
tially increasing as the cluster size increases (see Table S1 for the
exact count of clusters of each size used in each sampling strategy).
Each strategy produced a training set of 100 000 clusters, divided
in the manner discussed above. The test set of 10 500 clusters with
500 of each size was again used for the analysis of the sampling
strategy.

As seen in the comparison of errors in Table I and Fig. S3,
the method of evenly sampling from each cluster size provides the
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FIG. 9. Box and whisker plots showing the absolute error per water molecule in kcal/mol on the test set for the network trained using the even sampling strategy trained on
100 000 clusters using RuNNer (left), on 100 000 clusters using the CF-CNN (middle), and on 500 000 (right) clusters using the CF-CNN. Boxes extend from the lower to
upper quartiles with a line at the median value. Bars extend to 1.5 times the interquartile range, with points beyond this being plotted individually to show outliers explicitly. All
plots have the same y-axis for direct comparison.

smallest distribution of errors mostly centered around zero (0.0008
± 0.09 kcal/mol) and the lowest test MAE and RMSE (0.0682 and
0.0941, respectively). The linear sampling method also gives a nar-
row distribution, but it is more offset toward overestimating the
energy (−0.0029 ± 0.10 kcal/mol), and the test MAE and RMSE
and are slightly larger (0.0695 and 0.0955, respectively). The expo-
nential sampling method gives a wider distribution of errors with
a similar offset toward overestimation (−0.0020 ± 0.14 kcal/mol),
and a notably larger test MAE and RMSE (0.0708 and 0.1404,
respectively). This trend is amplified in the examination of the
largest outlying error: the maximum absolute error predicted by
the network with evenly sampled data is 0.57 kcal/mol, that by
the model with linearly sampled data is 1.19 kcal/mol, and that
by the model with exponentially sampled data is 10.69 kcal/mol.
By definition, the linear and exponential sampling strategies con-
tain larger proportions of larger sized clusters. However, in our
analysis of the full database, we found that structural diversity
decreases as N increases, as measured by the similarity and the
projected similarity metrics. This reduced structural diversity led
to training sets sampled with these two strategies not covering as
much of the structural space of interest as the training set sam-
pled evenly, which is likely the cause of the increased error in
the predictions of CF-CNNs trained on data sampled linearly and
exponentially.

The colloquial “chemical accuracy” of ab initio methods is con-
sidered to be 1 kcal/mol. The TTM2.1-F potential has been shown
to reproduce the total binding energies of clusters with sizes up
to N = 20 within <1% from the second order perturbation the-
ory (MP2) complete basis set estimates.53,54 This is superior to
a DFT-based result using density functionals that are customar-
ily used for bulk water simulations. Notably, all predictions with
the even sampling strategy were in excellent agreement with the
values obtained with the TTM2.1-F potential, and both the lin-
ear and exponential sampling strategies produced only 1 predic-
tion above 1 kcal/mol. In fact, using the even sampling strategy,
78% of predictions (8153 of 10 500) were within 0.10 kcal/mol of
the computed value, 77% (8060 of 10 500) were when using the
linear sampling strategy, and 76% (8014 of 10 500) were when

using the exponential sampling strategy. Therefore, all three sam-
pling strategies produce highly accurate results. For the remain-
der of our studies, we used the even sampling strategy, as the
network trained using this strategy gave an error distribution
most centered around zero and showed the lowest number of
outliers.

The clusters in the training set were randomly chosen from the
database; the only consideration was given to cluster size. Therefore,
we also compared the results of training on three different random
samplings using the same sampling strategy and training hyperpa-
rameters described above. Figure S4 shows the error on the test set
for the three different CF-CNNs. All CF-CNNs give similar stan-
dard deviations of 0.09 kcal/mol–0.10 kcal/mol, but with slightly
different average error values ranging from −0.0054 kcal/mol to
0.0025 kcal/mol. The test MAEs range from 0.0682 to 0.0717, while
the test RMSEs range from 0.0941 to 0.0985. Therefore, the spe-
cific networks sampled from each cluster size have a noticeable
effect on the trained CF-CNN. We also examined the variance
in the CF-CNN itself by using a single training set but varying
the random seed (see Fig. S5). Among three different seeds, the
errors on the test set ranged from 0.0005 ± 0.10 kcal/mol to 0.0010
± 0.10 kcal/mol. The test MAEs ranged from 0.0682 to 0.0729, while
the test RMSEs ranged from 0.0941 to 0.1003. This shows that the
training/validation split and the initial weights (two factors con-
trolled by the random seed) also have a noticeable effect on CF-CNN
training.

Figure 9 shows a box and whisker plot of the absolute error
per water molecule in kcal/mol for each cluster size in the test set.
The absolute error per water molecule provides a normalized view of
the error, as the energy (thus the potential error) becomes larger in
absolute value as the cluster size increases. As seen in the figure, the
median absolute error per water molecule (denoted by green lines)
ranges from 0.0024 kcal/mol to 0.0033 kcal/mol for each cluster size,
and no general trend can be observed as the cluster size increases.
The boxes extend from the lower quartile to the upper quartile of
each cluster size, ranging from 0.0011 to 0.0055, and again no clear
trend is observed as the cluster size increases. Outliers are present
for each cluster size, with the two largest outliers of ∼0.025 kcal/mol

J. Chem. Phys. 153, 024302 (2020); doi: 10.1063/5.0009933 153, 024302-10

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

belonging to clusters of size N = 13 and 16. Again, no clear trend in
the number or magnitude of outliers was observed as the cluster size
increases. Typically, NNs perform poorly when extrapolating past
the bounds of their training set. However, even though the CF-CNN
was trained on clusters of size N = 11–29, the trained network was
able to predict clusters of size N = 10 and 30 with similar accuracy.
The lack of a trend in the error and the ability to accurately predict
the energy of clusters of smaller and larger size than those in the
training set indicate that the localized bonding pattern, rather than
a global pattern, is being learned by the network. This idea is sup-
ported by the architecture of the CF-CNN, which learns an energy
representation for each atom in the system and then sums over these
representations to produce the global energy. Because we set the
nearest-neighbor cutoff to 6 Å, it is reasonable to assume that the
network is learning the interactions between water clusters within
this range.

C. Comparison between RuNNer and SchNet
We next compare the results from the optimized CF-CNN with

those obtained using the Behler–Parrinello RuNNer network. Fig-
ure S6 shows the test set errors for RuNNer trained on the training
sets generated for the examination of the three sampling strate-
gies described above. The even sampling strategy provided the best
results, showing similar test errors to the CF-CNN trained on the
same dataset (−0.0006 ± 0.10 kcal/mol, MAE of 0.0725, and RMSE
of 0.0971). Again, the network generalized well to system sizes not
included in the training set (see Fig. 9). The median absolute error
per water molecule ranged from 0.0026 kcal/mol to 0.0033 kcal/mol
for each cluster size (compared to 0.0024 kcal/mol–0.0033 kcal/mol
for the CF-CNN), with the largest outlier of 0.0260 kcal/mol belong-
ing to cluster size N = 24. Again, no general trend was observed
as the cluster size increases. This favorable comparison indicates
that the CF-CNN is capable of producing high-quality predictions
of the potential energy. Notably, the errors achieved with both
RuNNer and CF-CNN are smaller than the intrinsic accuracy of
essentially any method for which reference training data could be
generated.

D. Large-scale training
From the above analysis on models trained on 100 000 clusters,

we determined the ideal training hyperparameters to be 2 interac-
tion blocks, 100 atom-wise features, and an even sampling strategy.
Using these optimized hyperparameters, we then undertook a large-
scale training using a training set composed of half a million clusters
with 26 316 clusters taken from each cluster size N = 11–29. Of this
training set, 450 000 were used to learn the weights and 50 000 to
validate those weights at each epoch. Again, a test set composed of
10 500 clusters with 500 taken from each cluster size N = 10–30 was
used to evaluate the trained network.

Each epoch took ∼4.5 min, and the training required 873
epochs to converge. Overall, the network required 2.7 days to train.
A final training loss of 0.0030 was achieved, and the final valida-
tion loss was 0.0035. The similar loss values indicate that the model
was not overfitting. The validation MAE and RMSE were 0.0426 and
0.0591, respectively, while the test MAE and RMSE were 0.0427 and
0.0593, respectively. These values are improved over those of the

optimal CF-CNN trained on 100 000 clusters. However, we note that
the improvement scales less than linearly with the training set size,
indicating that there may be a size limit after which the network will
no longer appreciably improve.

Figure 9 shows the box and whisker plot of the absolute error
per water molecule for each cluster in the test set. The mean absolute
error per water molecule was 0.0021 ± 0.0018 kcal/mol for clusters
of size N = 11–29, 0.0024 ± 0.0020 kcal/mol for N = 10, and 0.0023
± 0.0019 kcal/mol for N = 30. These similar errors indicate that the
network can accurately predict the energy of clusters with fewer or
more atoms than contained in the clusters in the training set. The
reduction in error again did not scale with the increase in the size
of the training set. Although the training set was increased by 500%,
from 100 000 to 500 000, the reduction in absolute error per water
molecule was only 38%. It seems that a point of diminishing returns
was reached in which the environment within a 6 Å radius of each
atom was well learned and additional data did not add new infor-
mation. Nonetheless, the network trained on 500 000 water clusters
was able to predict the energy of hydrogen-bonded water clusters to
a high degree of accuracy to the values obtained with the TTM2.1-F
potential.

E. Interpretation of the CF-CNN predictions
To obtain a surrogate model that is generalized to water clus-

ters of many different structures and sizes, adequate coverage of the
configuration space must be achieved. We quantified the configura-
tion space spanned by the 500 000 cluster structures in the training
set by computing the similarity and projected similarity of the clus-
ters in training set. The similarity is computed by considering each
atom in the cluster as a node and each bond (covalent and/or hydro-
gen bond) as an edge, while the projected similarity is computed by
considering each water molecule as a node and each hydrogen bond
as an edge. In both cases, the Laplacian of the cluster under con-
sideration is compared against the Laplacian of the lowest-energy
cluster in the database, regardless of whether it was included in
the training or the test set. The similarity value is unique to each
cluster, while projected similarity values are the same for clusters
with the same oxygen frame. Therefore, the projected similarity is a
convenient metric to group clusters within the same oxygen frame
family. Moreover, the similarity value can be determined within a
single oxygen frame family to examine the diversity of the hydrogen
atom arrangement.

Figure 10 shows the similarity and projected similarity of the
clusters in the training and test sets for each cluster size. The black
dots represent clusters in the training set, while the colored dots rep-
resent clusters in the test set, colored by the corresponding absolute
error per water molecule. There are no black dots for cluster sizes
N = 10 and 30 because clusters of those sizes were not included
in the training set but were included in the test set. It is immedi-
ately clear that clusters with smaller N are associated with a larger
amount of structural diversity, likely owing to the combinatorial
increase in hydrogen positions within an oxygen frame family as
N increases, as discussed in our analysis of the full database. The
clusters in the test set were similar to those in the training set.
Only a single cluster of N = 26 had a similarity value not cov-
ered by a cluster of that size in the training set, and its energy was
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FIG. 10. Left: plots of similarity vs projected similarity for each cluster size for the training and test sets used for the CF-CNN trained on 500 000 and tested on 10 500 clusters.
The similarity is computed on the all-atoms graph, while the projected similarity is computed on the projected graph. Right: plot of the Wiener index vs average shortest path
length derived from the projected graph of clusters in the training and test sets along with plots of the Wiener index and average shortest path length vs energy computed at
the TTM2.1-F level. Clusters in the training set are shown in black; clusters in the test set are colored according to the absolute error per water molecule (in kcal/mol) in the
CF-CNN prediction.

well predicted by the trained CF-CNN. Interestingly, clusters with
larger absolute error per water molecule tended to be closer in sim-
ilarity to the lowest-energy cluster in the database. This indicates
that our network is better at learning structures higher in energy
than the putative minimum. This behavior is not entirely unex-
pected, as the database, and consequently the training set, contains
a large number of structures within 5 kcal/mol from the putative
minimum.

The average shortest path length and Wiener index are com-
plementary topological metrics derived from the projected graph.
Figure 10 shows these two metrics plotted against each other for
clusters in the 500 000 cluster training set and the corresponding
10 500 cluster test set. The test set did not contain any clusters with a
Wiener index or average shortest path length outside of the bounds
of the training set. In the test set, 10 064 clusters had an absolute
error per water molecule between 0 kcal/mol and 0.006 kcal/mol, 404
had errors between 0.006 kcal/mol and 0.010 kcal/mol, and 32 had
errors between 0.010 kcal/mol and 0.015 kcal/mol. The mean aver-
age shortest path length of clusters in each error category slightly
increased from 2.44 to 2.46 to 2.51 as the error increased. The
mean Wiener index increased from 525 to 558 to 607 as the error
increased. Larger errors tended to be located toward the middle of
the range of values.

These two analyses indicate that clusters in the test set had sim-
ilar structures and topological metrics as clusters in the training set.

Therefore, the CF-CNN was exposed to a wide range of potential
bonding structures in water cluster networks, and thus, all error
analyses were interpolative in nature. The errors in prediction did
not correlate with any similarity or topological metrics, indicating
that the CF-CNN was able to accurately learn the examined area of
configuration space.

We then examined the mean degree of each cluster size in the
training and test sets, which are compared in Fig. 11. Clusters with
errors of less than 0.006 kcal/mol had very similar mean degrees
to those in the training set of the same cluster size. As the error
increased to between 0.006 kcal/mol and 0.010 kcal/mol, the mean
degrees began to deviate from those in the training set. Finally,
the degrees of clusters with the largest errors of 0.010 kcal/mol–
0.015 kcal/mol showed large deviations from those in the training
set, occasionally lying outside of the standard deviation of the mean
degrees in the training set for that particular cluster size.

We applied the same analysis to the mean number of
cycles in the training and test sets, as shown in Fig. 11. We
enumerated the number of trimers, tetramers, pentamers, and hex-
amers present in each cluster in the same manner as described in
our analysis of the full database. A similar trend to that of the mean
degree is seen in which the mean number of cycles for all cycle types
is similar between clusters in the training set and test set clusters that
showed the lowest errors. As the error increased, the mean number
of cycles began to deviate from that of the training set, and when
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FIG. 11. Left: the mean degree calculated from the projected graph of clusters in the training and test sets used for the CF-CNN trained on 500 000 clusters. Right: the mean
count of trimers, tetramers, pentamers, and hexamers in the training and test sets. The shaded regions shows one standard deviation of the mean for clusters in the training
set; clusters in the test set are represented as points colored according to the absolute error per water molecule (in kcal/mol) in the CF-CNN prediction.

the error was further increased, the mean number of cycles deviated
from that of the training set for all size cycles.

These results indicate that clusters that deviate from the mean
of the training set are more poorly predicted by the CF-CNN
than clusters that are more similar to those in the training set.
Although we showed above that the configuration space represented
by the training set encompasses that of the test set, meaning that
the CF-CNN is not exposed to new environments when making pre-
dictions on the test set, the CF-CNN had lower predictive power
for clusters that showed geometric deviations from the training set
mean.

IV. CONCLUSIONS
We used 500 000 structures from a recently published database

of over 5 × 106 unique water networks corresponding to local min-
ima of cluster sizes N = 3–30 to train a neural network that predicts
the potential energy with very high accuracy. In order to understand
the structural features of the networks in the database, we examined
the full database using descriptors derived from graph theory. We
computed two similarity indexes, one for the all-atoms graph and
the other for the projected graph, which together indicate the struc-
tural diversity present for each cluster size. We observed the largest
diversity for N = 16, with the decrease in diversity as N increased,
likely due to the combinatorial increase in all-atoms graphs within
each oxygen frame family of projected graphs. Complementary mea-
surements of connectivity, the average shortest path length, and
mean degree showed an approach toward a maximum connectiv-
ity, which is supported in previous studies on ice and liquid water.
We also observed the structural shift of more symmetric structures
to more cage-like, fully connected structures at N = 17 by examining
the number of cycles present in the cluster. At N = 17, the preva-
lence of tetramers decreased, while that of pentamers and hexamers
increased.

The clusters in the database were used to train a CF-CNN to
learn the potential energy of water clusters of various sizes. We
first optimized the training hyperparameters using a 100 000 clus-
ter subset from the database. For our dataset, 2 interaction blocks,
100 atom-wise features, and even sampling from each cluster size
N = 11–29 gave the lowest error on a test set of 10 500 clusters of
size N = 10–30. Multiple samplings from the database gave sim-
ilar results, indicating that the sampling strategy rather than the
actual sampling played a role during training of the CF-CNN. Vary-
ing the random seed, which affects the initial weights and train-
ing/validation split, had only a minor effect on training, indicating
that the CF-CNN is stable. We then used the optimized hyperpa-
rameters to train a network on 500 000 clusters of size N = 11–29. In
a test set of 10 500 clusters of size N = 10–30, the mean absolute
error per water molecule was 0.0021 ± 0.0018 kcal/mol for clus-
ters of size N = 11–29, 0.0024 ± 0.0020 kcal/mol for clusters of size
N = 10, and 0.0023 ± 0.0019 kcal/mol for N = 30. These similar
errors indicate that the network has the ability to accurately predict
the energy of clusters with both fewer and more molecules than the
ones contained in the clusters used in the training set.

The structural patterns of the clusters in the training and test
sets were analyzed using the same graph-theoretical descriptors used
in the analysis of the full database in order to provide a post-hoc
interpretation of the predictive power of the trained CF-CNN. The
range of similarity and topological indexes present in the training
set encompassed those in the test set, indicating that the full range
of configuration space in question was contained in the training
set. The errors in the energy prediction were not found to depend
on the similarity or topological metrics. However, structures with
mean degrees and number of cycles that deviated from the mean
values in the training set were associated with larger errors. This
indicates that clusters that deviated from the mean of the training
set—although they were within the configuration space learned by
the CF-CNN—were less well learned than structures with values
close to the mean. Therefore, the structural space covered by the
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training set influences the predictions of the resulting neural net-
work and must be considered alongside the chemical space when
developing training sets to encompass a compositionally diverse
test set.

In summary, we developed descriptors to analyze the struc-
tural patterns of a large (over 5 × 106) database of water cluster
minimum structures lying within 5 kcal/mol of the putative min-
ima of the N = 3–30 clusters. Using up to 500 000 structures from
this database, we demonstrated a scalable approach of training a
CF-CNN model using large volumes of data. Finally, we validated
the effectiveness of the developed descriptors in explaining the
results of the CF-CNN (a.k.a. the “black box”) model. To this end,
our study should not be seen as a fit of an Machine Learning Poten-
tial (MLP) to the TTM2.1-F model, as only the minimum energy
structures are used as part of the training set and the TTM2.1-F
potential was only used to obtain the minimum energy structures
because of its speed and accuracy. In principle, this procedure can be
used with any other model, ab initio or classical. The work presented
here provides the foundation for future analysis of the structural pat-
terns presented in more complex hydrogen-bonded networks, such
as liquid water and ice.

SUPPLEMENTARY MATERIAL

See the supplementary material for exact counts of clusters in
the training sets generated by different sampling strategies and error
plots generated during the optimization of the CF-CNN.
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