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Abstract

Intermolecular and long-range interactions are central to phenomena as diverse
as gene regulation, topological states of quantum materials, electrolyte transport
in batteries, and the universal solvation properties of water. We present a set
of challenge problems 1 for preserving intermolecular interactions and structural
motifs in machine-learning approaches to chemical problems, through the use of a
recently published dataset of 4.95 million water clusters held together by hydrogen
bonding interactions and resulting in longer range structural patterns. The dataset
provides spatial coordinates as well as two types of graph representations, to
accommodate a variety of machine-learning practices.

1 Introduction

The application of machine-learning (ML) techniques such as supervised learning and generative
models in chemistry is an active research area. ML-driven prediction of chemical properties and
generation of molecular structures with tailored properties have emerged as attractive alternatives
to expensive computational methods [20, 24, 23, 32, 31, 7, 14, 16, 22]. Though increasingly used,
graph representations of molecules often do not explicitly include non-covalent interactions such
as hydrogen bonding, which poses difficulties when examining systems with intermolecular and/or
long-range interactions [10]. To facilitate the development of such methods, we discuss a set of
challenge problems and suggest an approach based on a recently published database of low-energy
water cluster minima lying within 5 kcal/mol from the putative minimum of each cluster size [17].

Scientific motivation: A water cluster is a discrete hydrogen bonded network of water molecules.
While most interactions are short-range (i.e., between neighboring molecules) [19], there also exist
substantial (~20%) many-body, longer-range interactions (i.e., with next-nearest and more distant
neighbors) [30]. Understanding many-body and long-range hydrogen bonding interactions is key to
answering long-standing scientific questions such as the macroscopic properties of liquid water, ice,
and aqueous systems (e.g., heat capacity, density, dielectric constant, compressibility) [13]. These
interactions are responsible for the bulk and interfacial properties of liquid water and ice, as well
as solvation processes, and are key to the realization of diverse applications, from drug delivery to
protein folding and the design of quantum materials and novel electrolytes for batteries [15, 28, 9].

1https://exalearn.github.io/hydronet
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Figure 1: Data model: geometries provided as spa-
tial coordinates. In the graph representation nodes
are atoms (Atomic) or water molecules (Coarse)
and edges are covalent and/or hydrogen bonds.

HydroNet summary: The dataset of 4.95 mil-
lion water cluster minima is the largest collec-
tion of water cluster minima reported to date
[17]. Originally created to advance the devel-
opment of interaction potentials in chemical
physics, the dataset is composed of clusters of
isomers differing in the underlying hydrogen
bonding network. Each cluster is described by
its potential energy, Cartesian coordinates of
each atom, and two graph-based representations
of their bonding arrangement (Fig. 1): an atomic
interaction graph that captures both intramolecular and intermolecular bonding patterns and a coarse
graph that captures only the intermolecular structure of the cluster.

ML tasks on the dataset: 1) Molecular Property Prediction: given a water cluster with specified
spatial coordinate information or bonding structure, predict its energy. 2) Molecule Generation: given
N water molecules, generate candidate structures that conform to structural measures of low-energy
configurations described in the key challenges below.

Key challenges: A defining feature of water clusters is that numerous dissimilar structures can
have quite similar energies. In addition, for a given set of spatial orientations of oxygen atoms in
the cluster (oxygen network), there exist numerous hydrogen bonding networks (Coarse graphs)
depending on the arrangement of the hydrogen atoms, which form hydrogen bonds according to
the Bernal–Fowler rules [3]. The structural properties of low-energy hydrogen bonding networks –
characterized by graph-theoretical measures such as degree distribution, shortest path length, and
distribution of polygons (Fig. 2) – vary systematically with cluster size [4]. A generative method that
produces a water cluster network should be mindful of these properties, as clusters far outside the
distributions are likely to be much higher in energy and therefore of less interest.

Figure 2: Graph-based measures capturing intermolecular interactions and structural motifs in water
cluster networks. Clear patterns such as the average number of neighbors (left), the shortest path
between two water molecules (middle), and the predominance of pentamer and hexamer polygons
over tetramer polygons (right) emerge as the cluster size increases [4].

2 Dataset Description

The potential energy of each cluster was obtained using the ab initio-based Thole-type, flexible,
polarizable interaction potential for water (TTM2.1-F) [6, 8]. Clusters were generated with the
Monte Carlo Temperature Basin Paving (MCTBP) sampling method to produce a dense sampling
of low-energy water clusters containing 3–30 water molecules per cluster [17]. The water cluster
minima dataset [2] is represented in the three formats shown in Fig. 1, each as both line-delimited
JavaScript Object Notation (JSON) and Tensorflow Protobufs. Table 1 lists the information available
for each sample. The records are separated into predefined train (80%), validation (10%), and test
sets (10%), where clusters are maintained in the same subset for each data format. We also provide
code to compute graph descriptors for structural motif tracking [1].

3 Machine-Learning Tasks

We introduce the defined property prediction and generative modeling tasks on the water cluster
dataset and provide details on baseline implementations for the first task.

2



Table 1: Records in HydroNet are stored as dictionary objects with the below keys.
Key Type Description
energy float Energy of the cluster, in kcal/mol.
n_water int Number of water molecules.
n_atom int Number of atoms or, for coarse graphs, nodes.
atom list of ints Types of each atom or node in the graph. Atomic: 0 is

oxygen, 1 is hydrogen; coarse: all nodes are the same type.
z list of ints Geometry only. Atomic number of each atom.
coords N×3 array of floats Geometry only. XYZ coordinates of atoms, in angstrom.
n_bond list of ints Graph only. Number of edges in the graph.
bond list of ints Graph only. Types of edges. Atomic: 0 is covalent, 1 is

hydrogen; coarse: 0 is donor, 1 is acceptor.
connectivity N × 2 array of ints Graph only. Connectivity between nodes in the graph.

3.1 Cluster Potential Energy Prediction Task

This task is to predict the potential energy of a water cluster without the use of expensive ab initio
methods, in two settings. In the geometry-to-energy [21] setting, we assume the geometry of the
structure is known accurately. In the graph-to-energy [11, 26] setting, we require predictions to be
made from the connectivity of the water molecules only.

We approach these tasks using neural network potentials, in which the original state of each atom (hv)
and bond (αvw) is represented as a vector embedding based on atomic number and bond type. These
states are modified by successive message layers. Each message layer uses a multi-layer perceptron to
compute a message from the atom state (hv), a neighboring atom state (hw), and the connecting bond
(αvw). The atom and bond states are updated according to the following equations, which generalize
both the geometry-to-energy and graph-to-energy prediction settings described below. In the first, an
atom’s neighbors are those within a radial cutoff distance; in the second, neighbors are represented
by the adjacency matrix of the network.
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Figure 3: Performance of (top) SchNet trained on
500,000 water clusters, N=11–29, and tested on
10,500 clusters, N=10–30, and (bottom) MPNN
trained on HydroNet training set and evaluated on
test set. SchNet performance data from [4].

We sum the energy per atom values produced by
the penultimate layer to obtain the full cluster
energy.

For the geometry-to-energy problem, we pre-
viously [4] trained a continuous-filter convolu-
tional neural network (SchNet, PyTorch imple-
mentation [20]) on 500,000 water clusters of
size N=11–29. The training set was stratified by
cluster size, from which 10% were reserved for
validation during training. The test set was com-
posed of 10,500 clusters, with 500 from each
cluster size N=10–30. Clusters of size N=10,
30 allowed us to examine the effects of energy
prediction on clusters smaller and larger than
those in the training set. Using mean squared
error (MSE) as the loss, we achieved a final
training loss of 0.0030 (kcal/mol)2 and final val-
idation loss of 0.0035 (kcal/mol)2. The mean
absolute error (MAE) of the test set predictions
was 0.0427 kcal/mol. The network took ∼65
hours to train using 4 NVIDIA V100 GPUs.

For the graph-to-energy problem, we use a
message-passing neural network (MPNN) in-
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spired by [11] to create a reference implementation [26]. A first performance study shows that models
trained on coarse networks achieve losses an order of magnitude superior to those trained on atomic
networks, but exhibit significantly worse performance on the test set. Such generalization issues
suggest opportunities to explore regularization techniques or new network designs to take advantage
of coarse graphs.

Our best models have a MAE of ∼0.5 kcal/mol/water. Errors are nearly equal for clusters of sizes
10–30, giving us confidence that the MPNN is capturing the changes in favored geometries as clusters
increase in size. However, these errors are around a factor of 100 higher than those achieved with
SchNet, which incorporates knowledge of the atomic coordinates. In short, we find conventional
MPNN approaches to be promising solutions for energy prediction, but significant work is needed
by the ML community to find models suitable for evaluating systems with intermolecular and/or
long-range interactions.

3.2 Structural Measure-Preserving Molecular Generation Task

We define the task as follows: given N water molecules, generate a geometric/atomic/coarse represen-
tation that a) satisfies certain graph-theoretic structural measures derived from its hydrogen bonding
network and b) minimizes the cluster energy by optimizing the relative spatial arrangements of atoms
and molecules. As an example, Fig. 4 shows a sequence of transformations that would yield a more
stable water cluster from a static number of molecules.

Figure 4: Generation of a low-energy water
network from a higher energy structure.

Structural measures vary with cluster size, as shown
in Fig. 2. The mean degree (number of neigh-
bors) of water molecules in a hydrogen bonded net-
work increases and eventually plateaus when water
molecules become saturated with hydrogen bonds.
The shortest path length also increases with cluster
size, through the growth rate decays. The number
of cycles in the hydrogen bonded network also show
trends as clusters grow in size: trimers (3-cycles) and
tetramers (4-cycles) become less dominant, while
pentamers (5-cycles) and hexamers (6-cycles) emerge
as key building blocks. We also observe a strong
evolution in geometric structure (Fig. 5). The water
cluster structures start as quasi-planar graphs (N=3-
5), evolve into cubic graphs (N=7–16), and then into
cage-like structures (N=17 onward), with some struc-
tures being quasi-symmetric (i.e. for N=20).

4 Relationship with Other Work

Generative models and deep reinforcement learning methods that produce molecular structures with
desired properties are active research areas [31, 32, 7, 12, 16, 22]. However, most ML-benchmark
datasets [18, 27, 29] used by these studies map from spatial or graph structure to properties of interest
(e.g, drug-likeliness, binding affinity between a drug molecule and a target protein). Modeling the
interaction of heterogeneous functional groups and reasoning about potential reaction mechanisms
is the primary focus for such tasks. Our dataset and science challenge tasks require methods that
prioritize satisfying topological constraints, addressing challenges with stereoisomers, and modeling
variations in interaction patterns at multiple scales.

The multi-scale nature of the interactions of our dataset also fills a void in existing scientific datasets.
Datasets which map molecular geometry or molecular graphs, available for years, capture challenges
in which properties are driven by short-range covalent interactions [25, 29, 18]. There are also
datasets of condensed phases (e.g., AGNI [5]) in which long-range, many-body interactions become
important. Our dataset presents a complex mixture of short-range covalent, intermolecular hydrogen
bonding, and extended many-body effects. We propose this dataset as a basis for the challenges of
learning such effects from 3D geometries and inferring them from bonding structure.
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Figure 5: Geometric shape progression of low-energy structures with cluster size n (figure reproduced
from [17]).

5 Conclusions

We present challenge problems and a corresponding dataset to advance machine-learning on molecular
data. An important feature of the dataset discussed here is the incorporation of intermolecular
interactions, which allows for two distinct graph representations in addition to the spatial coordinates.
Our initial benchmarks illustrate a large performance gap between neural networks based on atomic
coordinates and those which use only the bonding structure, which make this benchmark particularly
relevant for advancing graph neural network-based generative and prediction models. Moreover, this
dataset is useful for the creation of novel machine-learning methods that preserve structural patterns
across a wide size regime and can address the key challenges of property prediction and molecular
generation.

6 Broader Impact

The problems addressed here have the potential to advance methods for modeling biological and
chemical systems, leading to vast speed-ups in computation that would accelerate accurate simulations
of large, complex systems. These speed-ups will allow domain researchers to more quickly assess
the properties of and generate potential structures for novel molecular systems with phenomena
dependant on long-range interactions. Such research is the beginning stage to making practicable,
real-world scientific advancements.
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