
A Chronological Edge-Driven Approach to Temporal Subgraph Isomorphism

Patrick Mackey∗ Katherine Porterfield∗ Erin Fitzhenry∗ Sutanay Choudhury∗

George Chin Jr.∗

Abstract

Many real world networks are considered temporal networks,

in which the chronological ordering of the edges has impor-

tance to the meaning of the data. Performing temporal sub-

graph matching on such graphs requires the edges in the

subgraphs to match the order of the temporal graph mo-

tif we are searching for. Previous methods for solving this

rely on the use of static subgraph matching to find potential

matches first, before filtering them based on edge order to

find the true temporal matches. We present a new algorithm

for temporal subgraph isomorphism that performs the sub-

graph matching directly on the chronologically sorted edges.

By restricting our search to only the subgraphs with chrono-

logically correct edges, we can improve the performance of

the algorithm significantly. We present experimental tim-

ing results to show significant performance improvements

on publicly available datasets for a number of different tem-

poral query graph motifs with four or more nodes. We also

demonstrate a practical example of how temporal subgraph

isomorphism can produce more meaningful results than tra-

ditional static subgraph searches.

1 Introduction

An important area of complex systems research is that
of temporal networks [10]. Temporal networks differ
from static networks in that edges are time-stamped ac-
cording to when the link occurred in the network. One
example is a cyber network, in which nodes may be IP
addresses and the edges represent packets of data that
transferred between them. Another common example
are social networks, where the edges can represent com-
munications or interactions that occur between people
at different points in time. Such networks are typically
treated as multi-digraphs, where edges are directed and
multiple edges can exist between pairs of nodes. By in-
cluding the temporal information, an analyst can hope
to have a more informed understanding of the network
than they would if they ignored the temporal ordering
of edges.

One popular method for trying to analyze both
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Figure 1: The temporal graph on the left has four
directed 3-cycles, but only one (B,C,E) matches the
sequential ordering of the temporal motif on the right.

static and temporal networks is subgraph pattern
matching [18]. Given a graph G = (VG, EG) and a
smaller graph of interest M = (VM , EM ), we attempt
to find all matching subgraphs H1...Hn ∈ G that are
isomorphic to M . By doing so, we hope to find a set
of interactions that match a particular pattern of inter-
est. An example might be a graph that represents a
specific molecular pattern in a chemical network, or a
graph that represents the behavior of a piece of malware
in a cyber network. Such subgraph matching often in-
volves datasets with attributes on either the nodes or
the edges, which can reduce the number of matches.

In some use cases, only the total count of matching
subgraphs is needed. In this usage, the subgraph
patterns we seek to find are typically referred to as
network motifs, and the total count of each pattern is
used as a way of characterizing the network as a whole
[11]. It is also possible to use the count of matching
subgraphs as a way of characterizing individual nodes in
a network, based on the number of matching subgraphs
each node lies on. Network motif analysis has found
a wide range of uses including analyzing biological
networks [16], social networks [4] and computational
graphs [19].

The subgraph isomorphism problem has long been
known to be NP-complete [1], however it can often
be computed relatively efficiently in practice. The ex-
ponential performance of the subgraph matching algo-
rithm is usually only exponential in regards to the num-

ar
X

iv
:1

80
1.

08
09

8v
1 

 [
cs

.D
S]

  2
4 

Ja
n 

20
18



A

B

C

D

4:00 4:05

11:30

4:10

4:15
δ = 1:00

Figure 2: This temporal graph has two sequential 3-
cycles, but only one that meets our restriction δ = 1:00
(B,C,D). The 3-cycle (A,B,C) is also sequential, but
extends beyond the 1:00 time period specified by the
δ-temporal motif.

ber of nodes or edges in M . This means searching for a
small subgraph can actually be quite efficient in many
cases, particularly if node and edge attributes are used
to restrict the number of potential matches.

While a number of techniques exist for finding
matches in static networks, most do not take the
temporal order of the edges into account when finding
instances of M in G. However, the ordering of these
edges be essential to the meaning of the query graph or
motif. A simple example is that of a sequential cycle,
in which each edge in the cycle occurs before the one
following it. If time is not taken into account, non-
sequential cycles may be found instead, which could
have completely different meaning given the use case.
For an example see Figure 1, in which we are looking
for a sequentially ordered 3-cycle in our graph. While a
number of 3-cycles exist, only one matches this ordering
criteria correctly.

In addition to a simple temporal ordering restric-
tion, it can also be useful to add a restriction on the
length of time permitted between edges in the subgraph.
This is referred to as a δ-temporal motif [13]. In a δ-
temporal motif approach, all edges in the matching sub-
graph must occur within a period of δ time units. This
added restriction prevents us from including edges that
may have occurred long after the initial edges in our
subgraph. This can improve both the usefulness of the
results as well as the performance time required to find
the matching subgraphs. See Figure 2 as an example
of a sequential 3-cycle, with δ = 1 hour. In this case
the cycle between A, B and C would not be included,
despite having the correct ordering, due to the edge be-
tween C and A occurring several hours later.

In this paper we present a new algorithm for finding
matching subgraphs in a temporal network that inher-
ently takes the ordering of the edges into account. We
do this through a chronologically sorted edge-driven ap-
proach that only searches through edges that occur in

the correct order. By doing so, we can have a signifi-
cantly more efficient approach for general temporal sub-
graph matching than was previously possible.

2 Related Work

Subgraph matching algorithms have existed since at
least the time of the publication of Ullmann’s algorithm
in 1976 [18]. Since then, many modifications have been
made to this approach to improve its performance. One
of the most commonly used is known as the VF2 al-
gorithm [3], itself an extension of the VF algorithm [2]
(named for two of its authors, Vento and Foggia). While
this approach can be used to find patterns in static net-
works, by default it ignores the chronological ordering
of edges, and only expects them to match a particular
topological configuration. While it may be possible to
add edge restrictions to enforce some temporal require-
ments in how the subgraphs are matched, it is not a
natural part of the algorithm.

Motif analysis on temporal networks is a much
more recent area of research. Kovanen et al. provide
an algorithm for finding temporal subgraphs, but have
the added restriction that edges in the motif must
represent consecutive events for the node [7]. While
this allows for fast subgraph counting, it does not
allow subgraph matching on graphs that have other
edges occurring in between the edge events of a motif.
Another approach was published by Gurukar et al.
[6]. The authors present a heuristic for counting
temporal motifs, but provide only an estimated count
with their approach, and do not exhaustively find all
exact temporal subgraph matches.

Another closely related work is that of Redmond
and Cunningham [14] [15]. Their definition of temporal
subgraph isomorphism has some similarities to our
own, but also has some distinct differences. The most
significant difference is that the query graphs do not
have their edges time-stamped. Instead, a subgraph is
considered to be a temporal match if all of the edges
occur within a particular δ and incoming edges occur
before outgoing edges. Since their query graphs do not
have any particular ordering to their edges (beyond that
incoming edges must occur first), there is no way to
directly compare the results of their algorithm to our
own.

Closer in spirit to our work is the recent publica-
tion by Parnajape, Benson and Leskovec [13]. Their
research uses an equivalent definition of temporal sub-
graph matching to our own. Their algorithmic ap-
proach, however, is quite different. When it comes to
the general subgraph matching use case, their approach
is to first perform a static subgraph match to find po-
tential temporal matches. After these potential matches



are found, a separate algorithm is used to find all tem-
poral subgraph matches from these potential matches.
While the running time of this secondary algorithm is
linear, it requires all potential matches to be found first.
This means that in some cases significantly more sub-
graphs will be initially found than needed, slowing down
the overall performance of the algorithm. In theory, this
difference could be exponential, requiring exponentially
more time than an approach that finds only the true
temporal matches would. A particularly bad example
would be looking for a δ-temporal motif in a complete
graph, where only one δ-temporal match existed. With-
out any additional restrictions, an exponential number
of subgraphs would be returned by the intial static sub-
graph matching phase, despite there be only one actual
temporal subgraph match.

In addition to their general temporal subgraph
matching algorithm, the authors also present a faster
algorithms for counting 2-node, 3-edge star and trian-
gle temporal motifs [13]. These approaches are signifi-
cantly faster than their approach for general temporal
subgraph matching, but have the downside of working
for only a particular set of graph patterns. While these
differ significantly from both our approach and earlier
static approaches, it is similar to ours in regards of being
chronologically edge-driven, with the edges iterated over
in chronological order to find the matching subgraphs.
Their timing experiments show them to be very efficient
at finding 2-node, 3-edge star and triangle temporal mo-
tifs. While it is common to perform motif analysis on
small graphs such as these, there are many known cases
where larger motifs are needed or useful [19, 20, 21].
The need to support efficient temporal subgraph match-
ing on larger query graphs was a main factor driving our
own algorithm research.

3 Example Application

To give an example of the usefulness of temporal graph
isomorphism, we will demonstrate how a targeted tem-
poral subgraph query can produce practical results from
a publicly available dataset, and how the results vary
significantly if the temporal ordering is ignored.

The data used was collected from the Carnegie Mel-
lon CERT Insider Threat Tools dataset, a synthetically
generated insider cyber test dataset [5]. The data repre-
sents a fictitious company, with the nodes representing
the employees, their computers, files, removable media
and websites they visited. Edges represent actions con-
necting these nodes together (e.g., download a file, log
in to a PC, etc.). For our analysis, we have selected
data taking place in the month of April 2011, which
represents 315K nodes with 21.8M temporal edges.

The particular insider threat we have focused on is

Emp. PC

FileEmail

1: Logon

2: Open

3: Attach

4: Send

5: Logoff

Figure 3: The temporal query graph used in our CERT
use case example.

the case where an employee is repeatedly stealing in-
formation from their co-workers by logging into their
machines, opening files, and sending them to his home
e-mail address. A motif that may be indicative of such a
threat is shown in Fig 3. While not all actions matching
this query would necessarily indicate malicious behav-
ior, observing an employee with an unusually high rate
of matching subgraphs may indicate closer observation
may be needed. For our use case, we have selected a
δ = 1 hour, as we are expecting this pattern to repre-
sent actions that occur in a relatively short period of
time. When searching for this temporal query graph in
our dataset, we find the exact employee we were expect-
ing (CDE1846), who was in fact the perpetrator in the
dataset.

We also compared how searching for this same
motif with an unordered static subgraph isomorphism
algorithm would effect the results. The results of our
experiments can be seen in Table 1. The first column
represents the subgraph isomorphism technique being
used. The second column has the value of δ (where
appropriate). The third column lists the number of
employee nodes that were found on matching subgraphs.
The fourth column tells the rank of the perpetrator node
in our search. A value of 1 means the perpetrator was
found on the largest number of matching subgraphs.

While our targeted temporal search gave us the ex-
act correct answer, a static search gave back a much
larger number of employees lying on matching sub-
graphs. A total of 2,297 matching nodes were found,
with the perpetrator having a rank of only 410 in the
list. There are actually a number of reasons why tempo-
ral order is so important in this use case. One important
factor is the use of the δ value. By restricting the time
to one hour, we are describing a particular set of ac-
tions: one that occurs in a relatively short amount of
time. If we make this value too high, we can get infe-
rior results, even with the correctly temporal ordering.
When this same pattern occurs over a period of several
hours, it may represent a normal employee going about
his normal daily business, instead of the pattern we are



Isomorphism δ # Matches Rank
Temporal 1 hr 1 1

Temporal 2 hr 8 1

Temporal 4 hr 68 1
Temporal 8 hr 298 1

Temporal 1 day 600 4
Temporal 2 days 721 47
Temporal (Alt. Order) 1 hr 2 1

Temporal (Alt. Order) 2 hr 28 1
Temporal (Alt. Order) 4 hr 343 1
Temporal (Alt. Order) 8 hr 1,053 7

Temporal (Alt. Order) 1 day 2,247 24
Temporal (Alt. Order) 2 days 2,248 132
Static NA 2,297 410

Table 1: Results from subgraph queries for our CERT
use case example. # Matches represents the number
of employees found on matching subgraphs. Rank
represents how high the actual perpetrator was in the
ranking of nodes (with 1 being the highest).

actually looking for, which is someone logging into mul-
tiple PCs quickly to pilfer files from their co-workers.
As can be seen in Table 1, as the value of δ increases,
we get increasingly more employees found in matching
subgraphs, despite the fact these employees were inno-
cent. When δ increases to the size of 1 day, the ranking
of the perpetrator drops as well.

Another important factor is that there is a different
meaning depending on the order of these events/edges.
A user who is opening a file after sending it suggests he
is already familiar with the contents. A user who opens
it first suggests someone who is unsure of the contents,
and may be looking for something in particular before
sending it. While the difference between these actions
may be subtle, they do represent actual differences in
behavior. As an example, if we flip the order of these
events, we get significantly worse results, as can be seen
in the rows marked Temporal (Alt. Order). Not only is
there an increasing number of matching employees, but
we also begin to see the actual perpetrator drop in rank
as δ increases.

4 Approach

While our approach could be modified to do simple
subgraph counting, our desire was to return a set of
all instances of subgraphs H1...Hn ∈ G that were
isomorphic toM . We also wanted an algorithm that was
not limited to any particular size or structure of query
graph or motif. The heart of the algorithm is described
in the function TemporalMatch in Algorithm 1
as well as the related subroutine FindNextMatch
listed in Algorithm 2. Some important bookkeeping
is necessary to make sure the nodes and edges of the
graph are being matched correctly:

Algorithm 1 Algorithm for chronologically sorted
edge-driven temporal subgraph matching. Exhaustively
finds all subgraphs isomorphic to our motif, including
the chronological ordering of their edges.

1: function TemporalMatch(G,M, δ)

2: — Initialize necessary variables —

3: for vG ∈ VG do
4: edgeCount[vG]← 0

5: mapGM [vG]← −1

6: for vM ∈ VM do

7: mapMG[vM ]← −1

8: results ← {}
9: eStack ← {}

10: eG ← 0

11: eM ← 0
12: t′ ←∞
13: — Loop until all matching subgraphs are found —

14: while true do
15: eG ← FindNextMatch(G, eM , eG,mapMG,mapGM , t′)
16: if eG < |EG| then
17: — Test if all edges in M are matched —
18: if eM = |EM | − 1 then

19: Create graph H from edges in eStack

20: Add H to results
21: else

22: (uG, vG)← EG[eG]
23: (uM , vM )← EM [eM ]

24: mapGM [uG]← uM
25: mapGM [vG]← vM
26: mapMG[uM ]← uG
27: mapMG[vM ]← vG
28: edgeCount[uG] += 1
29: edgeCount[vG] += 1

30: if eStack.empty() then

31: t′ ← time(eG) + δ

32: eStack.push(eG)
33: eM += 1

34: eG+ = 1

35: — Backup or quit if we run out of edges —

36: while eG ≥ |EG| or time(eG) > t′ do
37: if eStack is not empty then

38: eG ← eStack.pop() +1
39: if eStack.empty() then
40: t′ ←∞
41: edgeCount[uG] −= 1

42: edgeCount[vG] −= 1
43: — Unassign nodes if needed —

44: if edgeCount[uG] = 0 then
45: uM ← mapGM [uG]
46: mapMG[uM ]← −1
47: mapGM [uG]← −1

48: if edgeCount[vG] = 0 then

49: vM ← mapGM [vG]
50: mapMG[vM ]← −1

51: mapGM [vG]← −1

52: eM −= 1

53: else
54: return results



• EG: A list of edges ∈ G, sorted chronologically by
time stamp.

• EM : A list of edges ∈M , sorted chronologically by
time stamp.

• mapGM : A mapping of nodes in G to nodes in M .
In practice, this is an array of length |VG|. If a node
is not assigned to node in M , it will have a value
of -1.

• mapMG: A mapping of nodes in M to nodes in G.
In practice, this is an array of length |VM |. If a
node is not yet assigned to node in G, it will have
a value of -1.

• edgeCount: A mapping of nodes in G to the
number of adjacent edges that have been mapped
to them for our motif M . When this value drops to
zero, that vertex is free to be reassigned to another
node in M if necessary.

• eStack: A stack used to keep track of what edges
in G are currently mapped to edges in M . They
are always mapped in chronological order, so that
the first one will map to the first edge in M .

• t′: The latest time an edge can have in our
matching subgraph, given the time for the first edge
and δ. This is initially infinity until the first edge
is added. It gets reset when eStack is empty.

• results: A set of matching subgraphs to return at
the completion of the algorithm.

The algorithm works by iterating over each edge
index eM in EM in chronological order. Before the
next edge in M can be reached, a matching edge eG
in EG must be found. (Note: eM and eG are integer
indices into the sorted list of edges EM and EG, and not
actual edge structures). If an appropriate eG is found,
we map the source and destination nodes accordingly,
and continue on to find a match for the next edge in M .
Once the remaining edges in M are accounted for, we
can add that subgraph to our results list, and continue
on to find an alternative edge eG in G that can also
map to the last edge eM . If we iterate over all remaining
edges before all edges in EM are accounted for, we must
pop the last matched edge from our stack, and try again
from that point in the list of edges.

To determine which edge in EG we can try next,
we have the FindNextMatch subroutine specified in
Algorithm 2. This takes into account whether or
not either the source or destination node have already
been mapped, as well as the sequential ordering of
the most recently mapped edge. If these are not

Algorithm 2 Subroutine for finding the next matching
temporal edge that matches edge eM in our motif M .

1: function FindNextMatch(G, eM , eG,mapMG,mapGM , t′)
2: (uM , vM )← EM [eM ]

3: uG ← mapMG[uM ]

4: vG ← mapMG[vM ]
5: — Determine the potential edges to try —

6: S = E

7: if uG ≥ 0 and vG ≥ 0 then
8: S ← all edges e between G[uG][vG] where e ≥ eG and

time(eG) ≤ t′
9: else if uG ≥ 0 then

10: S ← all edges e emanating from uG where e ≥ eG and

time(eG) ≤ t′
11: else if vG ≥ 0 then

12: S ← all edges e emanating from vG where e ≥ eG and

time(eG) ≤ t′

13: — Try each edge until a match is made —
14: for e′G ∈ S do

15: (u′G, v
′
G)← EG[e′G]

16: — The mapping must match, or be unassigned —
17: if uG = u′G or (uG < 0 and mapGM [u′G] < 0) then

18: if vG = v′G or (vG < 0 and mapGM [v′G] < 0) then

19: if attribute match criteria are met then
20: return e′G
21: — Only reached if no suitable match found —
22: return |EG|

taken into account, the performance of the algorithm
may drastically slow down. Other attribute based
approaches may also be used to help improve this
narrowing process as well.

4.1 Time Complexity A worst case computational
time complexity can be calculated to be O(|EG||EM |).
This would occur when each edge in EG could be
matched to each edge in EM , and the value of δ exceeds
that of the time range for EG. An example would
be a complete graph with an exponential number of
subgraphs isomorphic to the query graph. For every
edge in EM we could expect it to match to every
edge in EG subsequent in time to the selected edge.
Even with the temporal restriction that the edges must
be subsequent to each other, we can still have an
exponential asymptotic complexity, since the sum of
a linearly decreasing series is still exponential (e.g.,
n∑

i=0

n− i = n(n+1)
2 = O(n2)).

In practice, we can expect the runtime to be typ-
ically less than this. If the number of edges expected
within δ is a constant k, we can calculate the time com-
plexity to be O(|EG| · k|EM |−1). The proof for this is
straight forward: In a worst case scenario (where each
edge in EG is a match for every edge in EM ) at most k
edges need to be visited for every edge in EM . In real-
world scenarios, we can actually expect performance to



Graph Nodes Static Edges Edges Time Span
CollegeMsg 1.9K 20.3K 60K 193 days

Email-Eu 986 2.5K 332K 2.2 years

MathOverflow 24.8K 228K 507K 6.5 years
Enron 82.2K 322K 1.15M 4 years

Table 2: Graph statistics for experimental data sets.
Static edges are reduced in size by merging parallel
temporal edges together.

be even better than this, since in most situations not
every edge should be a match. This also helps to shed
light on how the value of δ can have such a large impact
in the overall performance time.

In comparison to existing approaches, using VF2
to perform static subgraph matching has a worst case
computational time complexity of O(|VG|! · |VG|) and
a best case of O(|VG|2) [3]. To perform the additional
steps needed to perform the general temporal subgraph
matching of Paranjape et al., there is an additional time
of O(|H||EM | · |S′|), where H is the static subgraph
induced by M and S′ is the temporal edges between
pairs of nodes in H [13]. As the values of |H| and |EM |
tend to be very small, the authors consider this value to
be essentially a constant, and consider the performance
of this secondary step linear in regards to |S′|. As long
as the number of potential temporal edge matches (|S′|)
does not exceed |VG|2, we can consider the overall time
complexity of the approach of Paranjape et al. to be
asymptotically equivalent to VF2.

5 Timing Experiments

Determining which method should work faster analyt-
ically is a challenge, as the performance of both ap-
proaches is exponential in a worst case scenario, and
many factors can come into play in determining the ex-
act time complexity. Instead, we have opted to do a
number of timing experiments comparing the perfor-
mance time of our algorithm against that of VF2. As
this is actually just the first step in the previously pub-
lished approach, in practice the actual time required
should be longer. However, we believe this should
give us a decent baseline to compare our performance
against, as the secondary step of Paranjape et al. is
performed in linear time, and the implementation of
their general temporal subgraph isomorphism algorithm
is currently unavailable to us.

For our experiments we have selected four temporal
network datasets from the SNAP graph library [9] and
Koblenz Network Collection (KONECT) [8]. Informa-
tion about each of the datasets can be seen in Table 2.
CollegeMsg represents a set of private messages be-
tween users of an online social network at University of
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Figure 4: The temporal motifs for our experimental
analysis.

California, Irvine [12]. Email-Eu represents a collec-
tion of emails between members of an anonymous Eu-
ropean research institution [13]. MathOverflow rep-
resents comments on a popular online messageboard on
mathematics, where an edge represents a comment be-
tween users [13]. Enron contains edges representing
the email traffic between employees of the Enron corpo-
ration between 1999 and 2003 [8]. Each networks has
its own unique topological characteristics, which can be
seen to some extent by the varying results from the tem-
poral motif counting in Table 3.

The motifs used can be seen in Fig 4. These repre-
sent six different temporal subgraph patterns, between
4 and 5 nodes in size. These were selected in part as
they cannot currently be found by the more efficient
algorithms of Paranjape et al., which only work for 2-
node, triangle and 3-edge star motif patterns [13]. We
chose query graphs which we believed would give a wide
range of results on our test datasets. We performed our
experiments using δ = 1 hour and δ = 1 day for Col-
legeMSG and Email-Eu datasets, and δ = 1 day and
δ = 1 week for the MathOverflow and Enron datasets.
The latter was necessary due to the longer periods of
time between interactions in these networks.

To give an idea of the efficiency of our approach over
that of using a static subgraph matching algorithm, we



Static δ = 1 hour δ = 1 day
Graph Motif Subgraphs Time Subgraphs Time Speed Up Subgraphs Time Speed Up

CollegeMSG M1 876 18.8 3.46K 0.546 34.5x 63.2K 6.24 3.01x
CollegeMSG M2 238K 43.2 75.4K 2.04 21.1x 1.46M 34.3 1.26x
CollegeMSG M3 1.57K 19.3 1.06K 0.499 38.6x 53.5K 6.16 3.12x
CollegeMSG M4 48 2.18 0 0.296 7.38x 173K 1.28 1.71x
CollegeMSG M5 202M 9.88K 1.28M 35.1 281x 49.7M 1.34K 7.36x
CollegeMSG M6 10.9M 2.02K 227K 6.74 300x 16.2M 435 4.66x

Email-Eu M1 3.96K 33.5 258 1.14 29.4x 129K 12.9 2.60x
Email-Eu M2 367K 91.4 30.1K 1.80 50.9x 2.40M 59.4 5.43x
Email-Eu M3 12.0K 40.1 493 1.15 34.7x 276K 16.8 6.22x
Email-Eu M4 554 4.99 23 1.09 4.57x 49.2K 6.44 0.775x
Email-Eu M5 57.7M 7.18K 4.71M 131 54.9x 144M 1.75K 4.10x
Email-Eu M6 7.08M 1.54K 31.1K 2.45 627x 6.89M 200 7.68x

Static δ = 1 day δ = 1 week
Graph Motif Subgraphs Time Subgraphs Time Speed Up Subgraphs Time Speed Up

MathOverflow M1 1.42M 2.94K 2 0.001 2.94Mx 531 0.047 62.5Kx
MathOverflow M2 218M 11.4K 248 0.015 760Kx 9.06K 0.218 52.3Kx
MathOverflow M3 5.53M 4.02K 4 0.001 4.02Mx 684 0.047 85.5Kx
MathOverflow M4 285K 2.34K 0 0.015 156Kx 180 0.015 156Kx
MathOverflow M5 — > 24 hr 805 0.031 > 2.79Mx 214K 5.897 14.7Kx
MathOverflow M6 — > 24 hr 1.70K 0.062 > 1.39Mx 72.0K 2.059 42.0Kx

Enron M1 246K 1.21K 2 0.046 26.3Kx 125 0.156 7.77Kx
Enron M2 119M 4.51K 1.21K 0.078 57.9Kx 22.7K 0.656 6.88Kx
Enron M3 1.71M 1.62K 2 0.047 34.4Kx 274 0.156 10.4Kx
Enron M4 33.3 K 55.6 0 0.047 1.18Kx 14 0.109 510x
Enron M5 — > 24 hr 12.6M 333 > 259x 217M 6.05K > 14.3x
Enron M6 — > 24 hr 2.33K 0.28 > 309Kx 112K 5.57 > 15.5Kx

Table 3: Performance comparing the results of static subgraph matching versus our δ-temporal matching for our
test datasets. Different values of δ were used depending on the frequency of interactions in each network. All
times are in wall-clock seconds.

have calculated the following for each of our motifs:

• The number of matching static subgraphs.

• The time in seconds to find the matching static
subgraphs with the Boost implementation of VF2.
[17]

• The number of matching temporal subgraphs.

• The time in seconds to find the matching temporal
subgraphs with our chronological edge-driven algo-
rithm.

All algorithms were implemented in C++ and exe-
cuted on a single thread of a 1.80 GHz Intel Xeon E5-
2603 CPU with 64 GB of memory. The Boost graph
library implementation of the VF2 algorithm was used
to perform the static subgraph matching in our exper-
iments [17]. Timings include only the time to perform
subgraph searches, and not input or output times. The
results of our experiments can be seen in Table 3. In
some cases the time taken for VF2 to complete took over

24 hours. In these situations we stopped the algorithm,
and simply recorded the time as taking > 24 hours.

Both the subgraph counts and performance times
lead to some intriguing results. In some cases, the
difference between the number of static subgraphs and
δ-temporal subgraphs can be very dramatic. The most
extreme case was that of the MathOverflow graph,
which had around 285,000 static subgraphs matching
M4, but none matching that pattern when time was
taken into account for δ values of 1 day.

In other cases, the number of δ-temporal subgraphs
was actually higher than the number of static sub-
graphs. This is due to the fact that we were merged
parallel edges when computing static subgraph isomor-
phism with VF2. In some of these cases our approach
was still significantly faster. Examples include the Col-
legeMSG graph, when δ = 1 day, for motifs M1, M2,
M3, M4, and M6. In each case, the number of temporal
isomorphic subgraphs was significantly higher than the
number of static isomorphic subgraphs, and yet there
was still speed up between 1.26x and 4.66x. We see a



similar pattern with the Email-Eu datasets with δ = 1
day as well. In all but one case, our approach was faster
than that of VF2, despite having more isomorphic sub-
graphs.

Generally speaking, increasing δ does decrease the
performance of our approach. In fact, when searching
for the M4 motif with δ = 1 day in the Email-Eu graph,
we actually found our algorithm to be slower than VF2.
We suspect this would continue to be the case for many
of the datasets as δ continues to increase, although it
can depend on many factors about the graph, such as
the number of parallel edges between nodes, and the
range of time represented in the network.

For the most part, the performance of our algorithm
was vastly faster than that of VF2 for the given motifs.
This was especially true for the largest of the graphs, the
MathOverflow and Enron datasets. For these graphs,
when δ = 1 day, we had speed up between 1000 and over
4 million times that of the VF2 algorithm, with 4 of the
motifs for the MathOverflow producing over 1 million
times speed up. While the speed up decreased when δ
= 1 week, we still saw speed ups between around 14x
to over 100,000x that of VF2, with most motifs giving
a speed up in the thousands.

To gain a better understanding of how the number
of matching subgraphs effects the speed up of the
algorithm, we created a chart plotting the ratio of static
subgraphs over temporal subgraphs on the x-axis, with
the amount of speed up on the y-axis. The resulting
log-log plot can be seen in Fig 5. While there is
some fluctuation in the results, there is a clear positive
correlation between the ratio of matching subgraphs
and the speed up of the algorithm. While there are
undoubtedly a number of factors that impact the overall
performance, the reduction in number of matching
subgraphs seems to be one of the biggest factors in our
algorithm’s performance improvement over using VF2.

6 Conclusion and Future Work

As can be seen in from the results of our experiments,
a significant speed up can be had in many cases by
applying a chronological edge-based matching approach
to the temporal subgraph isomorphism problem. Not
surprisingly, the data also shows that the choice of δ
can have a significant impact on the performance as
well. In situations where δ grows large, other techniques
for temporal subgraph matching may prove to be more
efficient. This ultimately seems to depend heavily on
the total number of matching subgraphs. If the number
of temporal isomorphic subgraphs greatly exceeds the
number of static isomorphic subgraphs, it may end
up being more efficient to follow the techniques that
apply the static subgraph matching first, and filter for

Figure 5: A log-log plot comparing the ratio of static
and temporal subgraphs to the overall speed up of our
algorithm.

temporal matches second. Further study will be needed
to see if the secondary filtering technique of Paranjape
et al [13] is efficient enough to outperform our algorithm
in these situations.

One of the fascinating differences between temporal
and static subgraph matching is that the number of
matching temporal graphs can be either greater or
lesser than the number of static graphs. Despite the
fact that a number of the experiments produced more
matching subgraphs for the temporal approach, the
performance was still usually faster than the traditional
static matching method. It was only when the difference
became two orders of magnitude greater that we saw
a slow down of our approach over that of VF2. We
believe this advantage of our algorithm may in part be
due to the fact that less of the search space is required
to be traversed in the temporal matching process, even
if it means more subgraphs are matched overall. By
only visiting edges in chronological order, we can often
ignore a large portion of the edges during the matching
process, improving the overall time complexity.

While smaller query graphs may suffice for many
uses of motif analysis, we believe the ability of our
approach to generalize to larger subgraphs could be
useful to many. It also shows that a more efficient
general approach to the temporal subgraph matching
problem is possible. By performing the matching
against the edges and not the nodes, we can take the
ordering of the edges into account and match only those
that are in the correct chronological sequence. By
making these algorithmic improvements, we can enable



a speed up of performance by the thousands or even
millions in some cases.

Subgraph matching and motif analysis have become
an increasingly powerful tools for those working in
data mining and graph analytics. While the problem
remains NP-complete, great gains can still be made in
practice for many real-world datasets. When it comes
to query graphs of four or more nodes, we believe
our approach to general temporal subgraph matching
should be more efficient in most cases than previously
published techniques. By taking advantage of the
chronological ordering of edges, larger temporal motifs
and query graphs should no longer be off limits from
being used in temporal network analysis.
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