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ABSTRACT
Property graphs can be used to represent heterogeneous networks
with labeled (attributed) vertices and edges. Given a property graph,
simulating another graph with same or greater size with the same
statistical properties with respect to the labels and connectivity is
critical for privacy preservation and benchmarking purposes. In this
work we tackle the problem of capturing the statistical dependence
of the edge connectivity on the vertex labels and using the same
distribution to regenerate property graphs of the same or expanded
size in a scalable manner. However, accurate simulation becomes a
challenge when the attributes do not completely explain the network
structure. We propose the Property Graph Model (PGM) approach
that uses a label augmentation strategy to mitigate the problem and
preserve the vertex label and the edge connectivity distributions as
well as their correlation, while also replicating the degree distribu-
tion. Our proposed algorithm is scalable with a linear complexity in
the number of edges in the target graph. We illustrate the efficacy of
the PGM approach in regenerating and expanding the datasets by
leveraging two distinct illustrations. Our open-source implementa-
tion is available on GitHub 1.
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1 INTRODUCTION
Most real-world datasets that naturally lend themselves to a graph
representation also contain significant amounts of label (or attribute)
information. This situation is promoting the popularity of property
graphs: multi-graphs where the vertices and edges are labeled with
key-value pairs [10]. For example, the Microsoft Academic Graph
has labels such as affiliation, field of study, etc., for every person.

1https://github.com/propgraph/pgm
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These attributes help answer questions such as: 1) how strong are
collaborations between two fields? 2) where is a person with a cer-
tain affiliation and field of study likely to publish most? Similar
motivating examples are abound in other domains such as bioinfor-
matics (protein-interaction networks), medicine (clinical records)
and cyber-security (network-traffic data). The need for accurate and
scalable simulation arises as an important capability for property
graphs. We often need to re-generate datasets with equivalent prop-
erties for privacy reasons, or expand a dataset by multiple orders of
magnitude for benchmarking studies.

THE PROBLEM In this work we consider the problem of cap-
turing the relationships between given and (in general) correlated
vertex labels and edge connectivity in property graphs through the
use of two different joint distributions. We show that a straightfor-
ward approach to capturing the label-structure relationships can be
accuracy-limited when the given labels cannot explain the structure
completely. We mitigate this problem by modeling the dependence
of the edge connectivity on the vertex labels and the structure itself
via the introduction of an augmented label that categorizes the vertex
degree distribution. We demonstrate the modeling of graphs with
vertices of the same type, connected by one specific type of rela-
tionship. General property graphs with heterogeneous vertices and
multiple relationships can be modeled by introducing vertex types as
new labels and building multiple distributions for the typed edges.

CONTRIBUTIONS Our Property Graph Model (PGM) retains
the generative nature of the Multiplicative Attribute Graph (MAG)
model [4] by expressing the probability of edge connection as a
function of the vertex labels. However, while MAG deals with latent
labels, PGM caters to correlated, meaningful real-world labels. In
this way it is similar to the Attribute Graph Model (AGM) approach
[8]. PGM has the added benefit of not needing to assume a model
for the graph topology, making it general enough to model property
graphs across domains. The use of label and edge categories to define
multinomial distributions provides for a scalable implementation
linear in the number of edges required in the target dataset. Finally,
we demonstrate our results on two datasets: a synthetic dataset gener-
ated by a role-based approach [3] and a real-world dataset extracted
from the Facebook Social Graph [5].

2 THE BASIC PGM APPROACH
Consider a source property graph GS = ⟨VS ,ES ,L,L(VS )⟩ with the
set of verticesVS and the set of edges ES ⊆ VS ×VS . L = {Lk }Mk=1 is a
set of M vertex label sets. Associated with the kth label is Lk , the set

https://doi.org/10.1145/3132847.3133065


of possible label values for that label and nk = |Lk | . For example,
in a social graph, the first label, Income-Range, may have 6 possible
values where as the second label, Education-Level, may have 4
possible values. Associated with each vertex vi ∈ VS is a random M-
vector L̄(vi ) =

〈
l i1, l

i
2, . . . , l

i
k , . . . , l

i
M

〉
drawing a label value l ik ∈ Lk ,

for each of the M labels. We denote by L(VS ), the set of all the
|VS | label value vectors in one to one correspondence with the set
of vertices VS .The target property graph GT = ⟨VT ,ET ,L,L(VT )⟩
is defined analogously, and is generated by capturing appropriate
statistics on GS . Note that both GS and GT share the same set of
vertex labels L.

Each realized vertex label vector L̄(vi ) can be considered as a

draw from the set of joint label assignments L =
M
×
k=1

Lk . There

are N =
∏M

k=1 nk possible joint label assignments called label
categories and the jth label category is denoted by c j . In doing so,
we flatten the joint distribution to a multinomial label distribution
PL over these N categories such that pj = PL

(
c j
)
, and

∑N
j=1 pj = 1.

With the observations of the vertex labels in the source dataset
GS , we can estimate the parameters pj via the maximum-likelihood
method as

PL
(
c j
)
=

∑ |VS |
i=1 1c j (L̄(vi ))
|VS |

. (1)

Here the indicator function is 1 only when the label vector for vertex
i is equal to the joint label category c j .

Next, we model the edge connectivity by a joint distribution over
pairs of label categories

(
c j , c j′

)
which we call edge categories. We

denote this distribution by PC . PC is defined over the sample space
L ×L and has one entry per pair of label vector realizations. PC can
be estimated from data as

PC
((
c j , c j′

))
=

∑
⟨vi ,vi′⟩∈ES 1(c j ,c j′ )

(
L̄(vi ), L̄(vi′ )

)
|ES |

. (2)

Here the indicator function is 1 only when the two verticesvi andvi′
have an edge between them and their label vectors take on categories
c j and c j′ respectively. Note that for undirected graphs, where the
order of c j and c j′ does not matter, PC can be represented as a more
compact multinomial distribution with N̂ =

(N
2
)

categories. When
we draw an edge from PC , the successful category gives the vertex
label categories corresponding to the two end points that form the
edge. Using a data structure such as a map (C2V in Algorithm 1),
the participating vertices can be randomly drawn from the pools of
vertices corresponding to those label categories. Drawing the edges
from the multinomial distribution PC renders the algorithm linear in
the number of edges required as opposed to a naive implementation
over vertex pairs which will lead to an algorithm that is quadratic
in the number of vertices required. Algorithm 1 describes the basic
PGM approach.

Lines 6 and 7 compute the label and edge connectivity distri-
butions PL and PC from the source graph dataset GS . Lines 9-11
sample from the distribution PL , the vertex label set L(VT ) for the
target graph. Lines 14-17 construct the edge set ET by drawing one
edge at a time by sampling from a multinomial distribution over the
edge categories. The resultant vertices to be connected are drawn

Algorithm 1 The input to the algorithm is the source property graph
dataset DS and the number of vertices and edges in the target prop-
erty graph - nt = |VT | and mt = |ET |. The output is the target
property graph ⟨VT ,ET ,L,L(VT )⟩.

1: procedure PGM-BASIC(DS ,nt ,mt )
2: ⟨VS ,ES ,L,L(VS )⟩ = processSourceDataSet (DS )
3: GT = SIMATTRGRAPH(⟨VS ,ES ,L,L(VS )⟩ ,nt ,mt )
4: end procedure
5: procedure SIMATTRGRAPH(⟨V ,E,L,L(V )⟩ ,nt ,mt )
6: PL = computeVertexLabelDist (V ,L(V ))
7: PC = computeEdдeConnectivityDist (V ,E,L(V ))
8: VX = ϕ, L(VX ) = ϕ, EX = ϕ
9: for idx = 1 to nt do

10:
(
v, L̄(v )

)
= sampleFromMultiNomialDist (PL )

11: VX = VX ∪ {v}, L(VX ) = L(VX ) ∪
{
L̄(v )

}

12: for i = 1 to N do ▷ Create map C2V for all N categories
13: C2V [ci ] = Set of all vertices with label category ci

14: for idx = 1 tomt do ▷ Draw one edge at a time
15: [c1, c2] = sampleFromMultiNomialDist (PC )
16: Draw v1 and v2 at random from C2V [c1] and C2V [c2]
17: EX = EX ∪ {(v1,v2)}

18: return ⟨VX ,EX ,L,L(VX )⟩
19: end procedure

at random from the sets of vertices corresponding to the label cate-
gories obtained from the edge category. Self and repeated edges can
be removed by post-processing.

3 WHEN LABELS FALL SHORT
We use two example graphs with contrasting properties to illus-
trate the strengths and limitations of the PGM method. The first
example is a role-based graph [3] such as an enterprise network
where the connectivity depends on roles that the vertices serve [2].
Thus, it is possible that there is a high chance of an edge between
a SERVER-CLIENT pair while the chance of an edge between a
SERVER-SERVER or a CLIENT-CLIENT pair is small. By con-
sidering two binary labels that can explain the edge connectivity,
we synthesized a role-based graph with 2000 vertices and 90,000
undirected edges. Our next example consists of an anonymized Face-
book social graph from the SNAP website [5]. The data is available
as a number of ego-nets, each associated with a large number of
binary vertex features that vary across the ego-nets. We collected
the 4 labels that were common to all vertices across the ego-nets
and leveraged the combined graph for our experiments. The graph
has around 4000 vertices and 88,000 undirected edges with nearly a
power-law degree distribution.

We then run the steps presented in Algorithm 1 to re-generate
target property graphs of same size as the source property graphs.
We compare the distributions PL and PC . The design of the algorithm
ensures that PL and PC for the source and target distributions will
match well in expectation and the same was verified. We also quan-
tify the comparison with respect to the degree distributions between
the ground truth graph and the regenerated graph by means of the
Jenson-Shannon Divergence (JSD) measure [6]. JSD is small when
the distributions are closer to each other.



The results for both the example datasets are shown in Figure
1. The top sub-figure shows the degree distribution comparisons
between the source and regenerated versions of the role-based graph,
for which there is a very good match. The degree distribution is
plotted as a complementary cumulative distribution function (CCDF).
The bottom sub-figure shows comparisons for the Facebook graph
(on a log-log scale) for which we don’t see a good match.

Figure 1: Top: Degree distribution comparison (linear scale) for
the scenario where the graph structure is fully explained by the
given labels. (JSD = 0.036). Bottom: Degree distribution com-
parison (log-log scale) for the Facebook graph where the graph
structure is not fully explained by the given labels (JSD = 0.354)

The joint distribution based approach that we described in Al-
gorithm 1 assumes that the edge connectivity is a function of label
values alone.This assumption is often violated in the case of real-
world datasets rendering the basic PGM approach ineffective in
recovering the structural properties such as the degree distributions.
It might be impossible to identify and collect all the vertex labels that
can explain the graph structure. Even if all the possible labels can be
collected, it is possible that the graph is grown temporally and as a
result, when new vertices arrive and form edges, the connectivity is
not only dependent on the label combination pairs but also on the
structure of the graph itself at the time point of their arrival. The next
section bridges this gap and extends the PGM approach to replicate
the topological features under limited label information.

4 LABEL AUGMENTATION TO RESCUE
In [7], the authors introduce the notion that the probability of edge
formation between a new vertex and a vertex already present in
the graph is dependent on both the similarity between the two ver-
tices and the popularity of already present vertex. The similarity
notion refers to affinity based on vertex attributes. The popularity
notion captures phenomena such as preferential attachment where
vertices tend to get attached to popular vertices which are vertices
with existing high degree values. Strict role-based networks such as
communication networks will favor similarity while networks such

as social networks will favor a combination of similarity and popular-
ity. In the case of the PGM approach, the joint distribution implicitly
encodes and generalizes the notion of similarity by quantifying the
average likelihood of edge connectivity between all possible pairs of
label categories (not necessarily between vertices having the same
label categories). The label augmentation process that we describe
next, will bring in the popularity aspect into the PGM approach.

Adopting the above philosophy, in order to better match the degree
distribution of the given graph, we propose to augment the given
set of labels with an additional label La that describe the vertex
popularity. The number of values that this additional label can take
on is denoted by na , corresponding to the division of the range of
the degree values for the given graph GS into na intervals. Vertex-
specific label values for are assigned based on the interval in which
a given vertex degree falls. We then run an iterative procedure by
incrementing na by 1 at each step till an error measure over the
source and target distributions of structural properties of interest is
acceptable. In each iteration, the interval lengths can be optimally
adjusted by means of an optimizer to minimize the error metric. Note
that both the distributions PL and PC without La will be retained as
before due to the marginalization property of the joint probability
mass functions. Algorithm 2 reflects the updated flow.

Algorithm 2 The updated approach that uses label augmentation.
This algorithm calls the simAttrGraph procedure in Algorithm. 1.

1: ⟨VS ,ES ,L,L(VS )⟩ = processDataSet (DS )
2: na ← 1 ▷ na is the number of intervals in degree range
3: error ← ∞
4: procedure PGM-AUGMENTED(⟨VS ,ES ,L,L(VS )⟩ ,nt ,mt )
5: while (error > tolerance ) do
6: na ← na + 1
7: Divide degree range of the source graph into na intervals
8: for each v ∈ VS do
9: Assign la (v ) value based on the degree(v)

10: Append the label vector L̄(v ) with la (v )

11: GT = SIMATTRGRAPH(⟨VS ,ES ,L,L(VS )⟩ ,nt ,mt )
12: error ← computeError (GS ,GT )

13: end procedure

Figure 2: Degree distribution comparison (log-log) between the
Facebook graph and the simulated graph with augmented label
La and for various values of na .

In our experiments, for a given value of na , we assigned the
interval lengths based on a logarithmic scale and the end-points
of the intervals were fixed. For the Facebook graph, the results
of augmenting with La with na = 0,2,4,8 are shown in Figure 2.



As seen the reproduction of the degree distribution is very poor
without augmentation (na = 0) and gets progressively better with
augmentation and by increasing na . The same is reflected in the
observation that the JSD measure decreases with increasing na .

5 DATASET EXPANSION
Next we consider the expansion of the dataset by using the estimated
joint distributions of the vertex labels and the edge connectivity, PL
and PC respectively. The results are illustrated in Figure. 3 for both
the role-based and the Facebook graphs. The number of vertices
were expanded by 10X where as the number of edges were expanded
by 12.5X. It’s clear from the observed results that the PGM approach
in its basic or extended form works well in expanding the attributed
graphs and preserves the degree distribution shapes. Leveraging a
serial implementation, we generated graphs with 1 million vertices,
31 million edges and total of 16 vertex label categories (2 binary
labels and an augmented label with 4 values) in about 42 minutes on
a 2.6GHz Mac workstation. Drawing of independent edges facilitates
easy parallelization of the code which is ongoing.

Figure 3: Comparing degree distributions shapes for a 10X
dataset expansion. Top : Role-based graph. Bottom : Facebook
graph with 8 label values for the augmented label (log-log scale).

6 RELATED WORK
Synthetic generation of property graphs is a nascent area of research
when compared to models for network topologies. Approaches based
on exponential random graph (ERG) [9] model the link probabil-
ity as a linear model in a number of topological features. While
such formulations are general enough to accommodate vertex la-
bels, these methods have high computational cost beyond a few
thousand vertices [8]. The Multiplicative Attribute Graph (MAG)
approach models the link probability between two vertices in terms
of affinities along a number of independent vertex level latent labels.
However, MAG’s drawback also lies in its reliance on latent labels.
Generating vertex labels as observed in the data becomes difficult in
a latent label based approach [8]. An alternate approach is presented

in Attributed Graph Model (AGM) [8] that combines two sources
of information: a) it learns the correlation between vertex labels
and the graph structure, and b) exploits a known generative model
for the graph topology in the form or Kronecker Product Graph
Model or the Chung-Lu model. The AGM approach can perform
well in replicating the graph topology and the correlation with the
label values for any given set of labels. However the approach is
agnostic to the explanatory power of the labels. Further, modeling
and expanding arbitrary property graph datasets can be a challenge
with the AGM approach that relies on specific models for the graph
topology. In a recent work [1] the authors focus on the problem of
cloning social networks in a privacy preserving fashion. The authors
use preferential attachment model to generate the graph, followed
by genetic algorithms to align the statistical distribution of attributes
in the source and derived dataset. The use of optimization process in
conjunction with the preferential attachment based model limits the
applicability and scalability of this approach.

7 CONCLUSIONS AND ONGOING WORK
We present a property graph generation algorithm that bridges two
state of the art approaches, [4] and [8], by leveraging on their
strengths, and addresses their respective weaknesses in modeling
realistic property graphs. We initiate the simulation with observed
labels and then introduce an augmented label to explain when the
connectivity is not explained by the given set of labels. Our ap-
proach reproduces or expands property graphs with a single edge
relation and homogeneous vertices while being able to match the
degree distributions closely. We are addressing several theoretical
and implementation challenges as part of ongoing research. They
include supporting heterogeneous vertices and relationships, better
label augmentation strategies for large-scale dataset expansion and
preservation of properties beyond degree distribution.
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