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ABSTRACT
Cyber security is one of the most significant technical challenges in
current times. Detecting adversarial activities, prevention of theft
of intellectual properties and customer data is a high priority for
corporations and government agencies around the world. Cyber
defenders need to analyze massive-scale, high-resolution network
flows to identify, categorize, and mitigate attacks involving net-
works spanning institutional and national boundaries. Many of the
cyber attacks can be described as subgraph patterns, with promi-
nent examples being insider infiltrations (path queries), denial of
service (parallel paths) and malicious spreads (tree queries). This
motivates us to explore subgraph matching on streaming graphs in
a continuous setting.

The novelty of our work lies in using the subgraph distributional
statistics collected from the streaming graph to determine the query
processing strategy. We introduce a “Lazy Search" algorithm where
the search strategy is decided on a vertex-to-vertex basis depending
on the likelihood of a match in the vertex neighborhood. We also
propose a metric named “Relative Selectivity" that is used to se-
lect between different query processing strategies. Our experiments
performed on real online news, network traffic stream and a syn-
thetic social network benchmark demonstrate 10-100x speedups
over selectivity agnostic approaches.

1. INTRODUCTION
Social media streams and cyber data sources such as computer

network traffic are prominent examples of high throughput, dy-
namic graphs. Application domains such as cyber security, emer-
gency response, national security put a premium on discovering
critical events as soon as they emerge in the data. Thus, processing
streaming updates to a dynamic graph database for real-time situa-
tional awareness is an important research problem. These particular
data sources are also distinguished by their natural representation
as heterogeneous or multi-relational graphs. For example, a social
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media data stream contains a diverse set of entity types such as per-
son, movie, images etc. and relations such as (friendship, like etc.).
For cyber-security, a network traffic dataset can be modeled as a
graph where vertices represent IP addresses and edges are typed by
classes of network traffic [12]. Our work is focused on continuous
querying of these dynamic, multi-relational graphs.

e = { protocol: RemoteDesktopConnection,  
        login:adminUser } 
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Figure 1: Graph based descriptions of attack patterns. a) In-
sider infiltration: This pattern shows how an attacker may
move laterally inside an enterprise, b) Denial of Service at-
tack, c) Information exfiltration: Victim browses a compro-
mised website. This downloads a script which establishes com-
munication with the botnet command and control.

For social networks, we are often inundated with the stream of
updates. Unless we choose to stay constantly connected to the so-
cial networks, it is highly desirable to report only the important
patterns/events as they occur in the data; for example, we may
choose to ask "tell me when two friends are meeting at a nearby
location". The stakes are much higher in the cyber-security do-
main. As the volume and throughput of network traffic or event log
datasets rise exponentially, the lack of ability to detect adversarial
actions in real-time provides an asymmetric advantage to attack-
ers. Internet backbone traffic collected by CAIDA 1), which we use
later as a dataset in our experiments typically accumulate 40 million
packets every minute. In a study titled “Data Breach Investigations
Report", US communications company Verizon analyzed 100,000
security incidents from the past decade and concluded that 90% of
the incidents fell into ten attack patterns. A number of these attacks
1http://www.caida.org
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can be naturally described as graph patterns. Figure 1 shows graph
based patterns for a number of these attacks. Organizations such
as internet service providers, content delivery networks etc. that
receive network traffic from a wide area network are ideally poised
to search for these attack patterns. Although there exists a signifi-
cant number of graph databases and graph processing frameworks
that scale to billion edge graphs, none of them support real-time
subgraph pattern matching as a primary feature. Periodic export
of network traffic flow or event alerts from log aggregation tools
to a graph database, followed by post-attack querying on the static
graph database is the most common workflow today. Despite cy-
ber security being a multi-billion dollar market worldwide, the re-
search on providing real-time querying capability on a single, large
streaming graph is rather scarce.

Continuous querying of a dynamic graph raises a number of
unique challenges. Indexing techniques that preprocess a graph
and speed up queries are expensive to periodically recompute in a
dynamic setting. Periodic execution of the query is an obvious solu-
tion under this condition, but the effectiveness of this approach will
reduce as the interval between query executions shrinks. Also, pe-
riodic searching of the entire graph can be wasteful where the query
match emerges slowly because we will find a partial match for the
query every time we search and potentially redo the work numerous
times. Very recent publications by Gao et al [7] and Mondal and
Deshpande [15] presents algorithms for implementing continuous
queries on graphs. This motivates us to study the problem of sub-
graph pattern matching in a streaming setting. We want to register
a pattern as a graph query and continuously perform the query on
the data graph as it evolves over time.

In addition to the cyber attack patterns in Figure 1, social queries
are also drawn from LSBench, a benchmark for reasoning on stream-
ing SPARQL data. A common theme that emerges is that all these
query graphs are heterogenous in nature. They are composed of dif-
ferent edge types (in cyber security) as well as different node and
edge types (in social media). None of the previous work on con-
tinuous pattern detection has addressed this issue of heterogeneity.
Exploiting the heterogeneity in both the query graph and the data
graph stream, and improving over heterogeneity agnostic contin-
uous pattern detection approaches is the primary contribution of
our research. The primary ideas behind our approach is described
below. We believe the simplicity of our approach is its greatest
strength, and it will allow easy adoption of our optimizations into
the distributed system implementations developed by others in the
field.
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Figure 2: Framework for subgraph pattern matching on
streaming graphs.

Figure 2 provides an overview of our approach. We approach the
problem from an incremental processing perspective where search
happens locally on every edge arrival. We do not search for the
entire query graph around every new edge arriving in the stream.
Given a query graph, the query optimizer decomposes it into smaller
subgraphs as ordered by their selectivity. The selectivity informa-
tion is obtained using the single-edge level and 2-edge path distri-
bution obtained from the graph stream (section 5). We store the
resulting decomposition into a data structure named SJ-Tree (Sub-
graph Join Tree) (section 3) that tracks matching subgraphs in the
data graph. For a new edge in the graph, we always search for the
most selective subgraph of the query graph. For other subgraphs
of the query graph, a search is triggered if and only if a match
for the previous subgraph in the selectivity order was obtained in
the neighborhood of the new edge. This algorithm named “Lazy
Search" is described in section 4. We introduce two metrics, Ex-

pected and Relative Selectivity, that captures the effectiveness of
a given query decomposition (section 5). Further, we demonstrate
how these metrics can be used to reason about the performance
from different decompositions and select the best performing strat-
egy.

1.1 Contributions
The most important takeaway from our work is that even as the

subgraph isomorphism problem is NP-complete, it is possible to
perform efficient continuous queries on dynamic graphs by exploit-
ing the heterogeneity in the data and query graph. More specific
contributions from the paper are listed below.

1. We present a dynamic graph search algorithm that demon-
strates speedup of multiple orders of magnitude with respect
to the state of the art.

2. We introduce two selectivity metrics for query graphs that are
estimated using efficiently obtainable distributional statistics
of single edge and 2-edge subgraphs from the graph stream.

3. We present an automatic query decomposition algorithm that
selects the best performing strategy using the aforementioned
graph stream statistics and Relative Selectivity.

Our observations are supported by experiments on datasets from
three diverse domains (online news, computer network traffic and
a social media stream).

2. BACKGROUND AND RELATED WORK
This section is aimed at providing an overview of the related

field and provide the context for the studied problem. We begin
with introducing the key concepts.

Multi-Relational Graphs We define a graph G as an ordered-
pair G = (V,E) where V is the set of vertices and the E is
the set of edges that connect the vertices. In the following, we
use V (G) and E(G) to indicate the set of vertices and edges as-
sociated with a graph G. A labeled graph is a six-tuple G =
(V,E,⌃V ,⌃E ,�V ,�E), where ⌃V and ⌃E are sets of distinct
labels for vertices and edges. �V and �E are vertex and edge la-
beling functions, i.e. �V : V ! ⌃V and �E : E ! ⌃E .

Dynamic Graphs We define dynamic graphs as graphs that are
changing over time through edge insertion or deletion. Every edge
in a dynamic graph has a timestamp associated with it and there-
fore, for any subgraph g of a dynamic graph we can define a time
interval ⌧(g) which is equal to the interval between the earliest and
latest edge belonging to g. We focus on directed, labeled dynamic
graphs with multi-edges in this work. The graph is maintained as
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a window in time. Given a time window tW , edges are deleted as
they become older than tlast � tW , where tlast is the timestamp of
the newest edge in the graph.

Subgraph Isomorphism Given the query graph Gq and a match-
ing subgraph of the data graph (Gd) denoted as G

0
d, a matching be-

tween Gq and G
0
d involves finding a bijective function f : V (Gq) !

V (G
0
d) such that for any two vertices u1, u2 2 V (Gq), (u1, u2) 2

E(Gq) ) (f(u1), f(u2)) 2 E(G
0
d).

2.1 Problem Statement
Every edge in a dynamic graph has a timestamp associated with

it and therefore, for any subgraph g of a dynamic graph we can de-
fine a time duration ⌧(g) which is equal to the duration between
the earliest and latest edge belonging to g. Given a dynamic multi-
relational graph Gd, a query graph Gq and a time window tW , we
report whenever a subgraph gd that is isomorphic to Gq appears
in Gd such that ⌧(gd) < tW . The isomorphic subgraphs are also
referred to as matches in the subsequent discussions. Assume that
Gk

d is the data graph at time step k. If M(Gk
d) is the cumulative

set of all matches discovered until time step k and Ek+1 is the set
of edges that arrive at time step k + 1, we present an algorithm to
compute a function f (Gd, Gq, Ek+1) which returns the incremen-
tal set of matches that result from updating Gd with Ek+1 and is
equal to M(Gk+1

d )�M(Gk
d).

2.2 Related Work
Graph querying techniques have been studied extensively in the

field of pattern recognition over nearly four decades [4]. Two pop-
ular subgraph isomorphism algorithms were developed by Ullman
[20] and Cordella et al. [5]. The VF2 algorithm [5] employs a filter-
ing and verification strategy and outperforms the original algorithm
by Ullman. Over the past decade, the database community has
focused strongly on developing indexing and query optimization
techniques to speed up the searching process. A common theme
of such approaches is to index vertices based on k-hop neighbor-
hood signatures derived from labels and other properties such as
degrees and centrality [17, 18, 23]. Other major areas of work in-
volve exploration of subgraph equivalence classes [8] and search
techniques for alternative representations such as similarity search
in a multi-dimensional vector space [13]. Apart from neighborhood
based signatures, graph sketches is an important area that focuses
on generating different synopses of a graph data set [22]. Develop-
ment of efficient graph sketching algorithms and their applications
into query estimation is expected to gain prominence in the near
future.

Investigation of subgraph isomorphism for dynamic graphs did
not receive much attention until recently. It introduces new algo-
rithmic challenges because we can not afford to index a dynamic
graph frequently enough for applications with real-time constraints.
In fact this is a problem with searches on large static graphs as
well [16]. There are two alternatives in that direction. We can
search for a pattern repeatedly or we can adopt an incremental ap-
proach. The work by Fan et al. [6] presents incremental algorithms
for graph pattern matching. However, their solution to subgraph
isomorphism is based on the repeated search strategy. Chen et
al. [2] proposed a feature structure called the node-neighbor tree

to search multiple graph streams using a vector space approach.
They relax the exact match requirement and require significant pre-
processing on the graph stream. Our work is distinguished by its
focus on temporal queries and handling of partial matches as they
are tracked over time using a novel data structure. From a data-
organization perspective, the SJ-Tree approach has similarities with

the Closure-Tree [9]. However, the closure-tree approach assumes
a database of independent graphs and the underlying data is not dy-
namic. There are strong parallels between our algorithm and the
very recent work by Sun et al. [16], where they implement a query-
decomposition based algorithm for searching a large static graph
in a distributed environment. Here our work is distinguished by
the focus on continuous queries that involves maintenance of par-
tial matches as driven by the query decomposition structure, and
optimizations for real-time query processing. Mondal and Desh-
pande [15] propose solutions to supporting continuous ego-centric
queries in a dynamic graph, Our work focuses on subgraph isomor-
phism, while [15] is primarily focused on aggregate queries. We
view this as complementary to our work, and it affirms our belief
that continuous queries on graphs is an important problem area,
and new algorithms and data structures are required for its devel-
opment.

The query pattern matching approach recently proposed in [7]
is most closely related to our work with some important distinc-
tions. The authors build a vertex centric, query processing engine
for dynamic graphs on top of Apache Giraph, a distributed com-
puting framework inspired by the Pregel framework. Their query
decomposition approach is based on identifying optimal sub-DAGs
(directed acyclic graph) in the query graph. The DAGs’ are then
traversed to identify source and sink vertices to define message
transition rules in the Giraph framework. Although they address
significant challenges inherent of processing dynamic graphs, it is
not suitable for all types of queries. Specifically, queries that have
cyclic communications, such as infiltration attack query in Figure
1 cannot be decomposed in DAG to find exact matches. Also, in
our work we exclusively focus on query graphs with labeled edges
with specific constraints. This are not addressed in the framework
proposed in [7]. Our work makes no assumptions about the query
graph structure and will find exact matches even when there is no
apparent sink vertices. Moreover, the focus in [7] is on distributed
implementation, while we focus on selectivity based query decom-
position - that can improve performance for heterogeneous graphs.
We show via edge distribution and selectivity plots that real world
heterogeneous graphs have a strong skew in subgraph selectivity.
The novelty of our work lies in estimating the selectivity of sub-
graphs from the graph stream and using the selectivity to determine
the subgraph search strategy.

In summary, we consider these works to pursue two related but
distinct directions that needs to be implemented in a scalable sys-
tem.

3. A QUERY DECOMPOSITION APPROACH
We introduce an approach that guides the search process to look

for specific subgraphs of the query graph and follow specific tran-
sitions from small to larger matches. Following are the main intu-
itions that drive this approach.

1. Instead of looking for a match with the entire graph or just
any edge of the query graph, partition the query graph into
smaller subgraphs and search for them.

2. Track the matches with individual subgraphs and combine
them to produce progressively larger matches.

3. Define a join order in which the individual matching sub-
graphs will be combined. Do not look for every possible
way to combine the matching subgraphs.

Figure 3 shows an illustration of the idea. Although the current
work is completely focused on temporal queries, the graph decom-
position approach is suited for a broader class of applications and
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Figure 3: Illustration of the decomposition of a social query in
SJ-Tree.

queries. The key aspect here is to search for substructures with-
out incurring too much cost. Even if some subgraphs of the query
graph are matched in the data, we will not attempt to assemble the
matches together without following the join order.

The query decomposition approach can still suffer from having
to maintain too many partial matches. If a subgraph of the query
graph is highly frequent, we will end up tracking a large number
of partial matches corresponding to that subgraph. Unless we have
quantitative knowledge about how these partial matches transition
into larger matches, we face the risk of tracking a large number of
non-promising matching subgraphs. The “Lazy Search" approach
outlined earlier in the introduction enhances this further. For any
new edge, we search for a query subgraph if and only if it is the
most selective subgraph in the query or if one of the either ver-
tices in that edge participates in a match with the preceding (query)
subgraph in the join order.

This section is dedicated towards introducing the data structures
and algorithms for dynamic graph search. We begin with introduc-
ing the SJ-Tree structure (section 3.1) and then proceed to present
the basic algorithms (Algorithm 1 and 2). The “Lazy Search"-
enhanced version is introduced later in section 4. Automated gen-
eration of SJ-Tree is covered in section 5.

3.1 Subgraph Join Tree (SJ-Tree)
We introduce a tree structure called Subgraph Join Tree (SJ-

Tree). SJ-Tree defines the decomposition of the query graph into
smaller subgraphs and is responsible for storing the partial matches
to the query. Figure 3 shows the decomposition of an example
query. Each of the rectangular boxes with dotted lines will be rep-
resented as a node in the SJ-Tree. The query subgraphs shown in-
side each “box" will be stored as a node property described below.

DEFINITION 3.1.1 A SJ-Tree T is defined as a binary tree com-
prised of the node set NT . Each n 2 NT corresponds to a subgraph
of the query graph Gq . Let’s assume VSG is the set of correspond-
ing subgraphs and |VSG| = |NT |. Additional properties of the
SJ-Tree are defined below.

DEFINITION 3.1.2 A Match or a Partial Match is as a set of
edge pairs. Each edge pair represents a mapping between an edge
in a query graph and its corresponding edge in the data graph.

DEFINITION 3.1.3 Given two graphs G1 = (V1, E1) and G2 =
(V2, E2), the join operation is defined as G3 = G1 1 G2, such
that G3 = (V3, E3) where V3 = V1 [ V2 and E3 = E1 [ E2.

PROPERTY 1. The subgraph corresponding to the root of the SJ-
Tree is isomorphic to the query graph. Thus, for nr = root{T},
VSG{nr} ⌘ Gq .

PROPERTY 2. The subgraph corresponding to any internal node
of T is isomorphic to the output of the join operation between the
subgraphs corresponding to its children. If nl and nr are the left
and right child of n, then VSG{n} = VSG{nl} 1 VSG{nr}.

Therefore, each leaf of the SJ-Tree represent subgraphs that we
want to search for (perform subgraph isomorphism) on the stream-
ing updates. Internal nodes in the SJ-Tree represents subgraphs
that result from the joining of subgraphs returned by the subgraph
isomorphism operations.

PROPERTY 3. Each node in the SJ-Tree maintains a set of matches.
We define a function matches(n) that for any node n 2 NT , re-
turns a set of subgraphs of the data graph. If M = matches(n),
then 8Gm 2 M , Gm ⌘ VSG{n}.

PROPERTY 4. Each internal node n in the SJ-Tree maintains a
subgraph, CUT-SUBGRAPH(n) that equals the intersection of the
query subgraphs of its child nodes.

For any internal node n 2 NT such that CUT-SUBGRAPH(n) 6=
;, we also define a projection operator ⇧. Assume that G1 and G2

are isomorphic, G1 ⌘ G2. Also define �V and �E as functions
that define the bijective mapping between the vertices and edges of
G1 and G2. Consider g1, a subgraph of G1: g1 ✓ G1. Then g2 =
⇧(G2, g1) is a subgraph of G2 such that V (g2) = �V (V (g1))
and E(g2) = �E(E (g1)).

Our decision to use a binary tree as opposed to an n-ary tree is
influenced by the simplicity and lowering the combinatorial cost
of joining matches from multiple children. With the properties of
the SJ-Tree defined, we are now ready to describe the graph search
algorithm.

3.2 Dynamic Graph Search Algorithm

Algorithm 1 DYNAMIC-GRAPH-SEARCH(Gd, T, edges)
1: leaf -nodes =GET-LEAF-NODES(T )
2: for all es 2 edges do
3: UPDATE-GRAPH(Gd, es)
4: for all n 2 leaf -nodes do
5: gqsub =GET-QUERY-SUBGRAPH(T, n)
6: matches =SUBGRAPH-ISO(Gd, g

q
sub, es)

7: if matches 6= ; then
8: for all m 2 matches do
9: UPDATE-SJ-TREE(T, n,m)

We begin with describing our dynamic graph search algorithm
(Algorithm 1 and 2). The input to DYNAMIC-GRAPH-SEARCH
is the dynamic graph so far Gd, the SJ-Tree (T ) corresponding to
the query graph and the set of incoming edges. Every incoming
edge is first added to the graph (Algorithm 1, line 3). Next, we
iterate over all the query subgraphs to search for matches contain-
ing the new edge (line 5-6). Any discovered match is added to the
SJ-Tree (line 9).

Next, we describe the UPDATE-SJ-TREE function. Each node
in the SJ-Tree maintains its sibling and parent node information
(Algorithm 2, line 1-2). Also, each node in the SJ-Tree maintains
a hash table (referred by the match-tables property in Algorithm 2,
line 4). GET() and ADD() provides lookup and update operations
on the hash tables. Each entry in the hash table refers to a Match.
Whenever a new matching subgraph g is added to a node in the SJ-
Tree, we compute a key using its projection (⇧(g)) and insert the
key and the matching subgraph into the corresponding hash table
(line 12). When a new match is inserted into a leaf node we check
to see if it can be combined (referred as JOIN()) with any matches
that are contained in the collection maintained at its sibling node.
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A successful combination of matching subgraphs between the leaf
and its sibling node leads to the insertion of a larger match at the
parent node. This process is repeated recursively (line 11) as long
as larger matching subgraphs can be produced by moving up in the
SJ-Tree. A complete match is found when two matches belonging
to the children of the root node are combined successfully.

EXAMPLE Let us revisit Figure 3 for an example. Assuming we
find a match with the query subgraph containing a single “friend"
edge (e.g. {(“George", “friend", “John")}), we will probe the hash
table in the leaf node with “likes" edges. If the hash table stored
a subgraph such as {(“John", “likes", “Santana")}, the JOIN() will
produce a 2-edge subgraph {(“George", “friend", “John"), (“John",
“likes", “Santana")}. Next, it will be inserted into the parent node
with 2-edges. The same process will be subsequently repeated,
beginning with the probing of the hash table storing matches with
subgraphs with a “follows" edge.

Algorithm 2 UPDATE-SJ-TREE(node,m)

1: sibling = sibling[node]
2: parent = parent[node]
3: k =GET-JOIN-KEY(CUT-SUBGRAPH[parent], m)
4: Hs = match-tables[sibling]
5: Mk

s = GET(Hs, k)
6: for all ms 2 Mk

s do
7: msup = JOIN(ms,m)
8: if parent = root then
9: PRINT(’MATCH FOUND : ’, msup)

10: else
11: UPDATE-SJ-TREE(parent,msup)
12: ADD(match-tables[node], k,m)

4. LAZY SEARCH
Revisiting our example from Figure 3, it is reasonable to assume

that the “friend" relation is highly frequent in the data. If we de-
composed the query graph all the way to single edges then we will
be tracking all edges that match “friend". Clearly, this is waste-
ful. One may suggest decomposing the query to larger subgraphs.
However, it will also increase the average time incurred in per-
forming subgraph isomorphism. Deciding the right granularity of
decomposition requires significant knowledge about the dynamic
graph. This motivates us to introduce a new algorithmic extension.

Assume the query graph Gq is partitioned into two subgraphs
g1 and G1

q . We use the notation Gk
q to indicate what remains of

Gq after the k-th iteration in the decomposition process. If the
probability of finding a match for g1 is less than the probability
of finding a match for G1

q , then it is always desirable to search
for g1 and look for G1

q only where an occurrence of g1 is found.
Therefore, we select g1 to be the most selective edge or 2-edge
subgraph in the query graph and always search for g1 around every
new edge in the graph. Once we detect subgraphs in Gd that match
with g1, we follow the same approach to search for Gq in their
neighborhood. We partition G1

q further into two subgraphs: g2 and
G2

q , where g2 is another 1-edge or 2-edge subgraph.
DATA STRUCTURES With the SJ-Tree, the partitioning of Gq is

done upfront at the query compile time with g1, g2 etc becoming
the leaves of the tree. The main difference between Lazy Search
and that of Algorithm 2 is that we will be searching for g2 only
around the edges in Gd where a match with g1 is found. Therefore,
for every vertex u in Gd, we need to keep track of the gi-s such
that u is present in the matching subgraph for gi. We use a bitmap
structure Mb to maintain this information. Each row in the bitmap

refers to a vertex in Gd and the i-th column refers to gi, or the i-
th leaf in the SJ-Tree. If the search for subgraph gi is enabled for
vertex u in Gd, then Mb[u][i] = 1 and zero otherwise. Whenever
a matching subgraph g0 for gi is discovered, we turn on the search
for gi+1 for all vertices in V (g0). This is accomplished by setting
Mb[v][i+ 1] = 1 where v 2 V (g0).

ROBUSTNESS WITH SUBGRAPH ARRIVAL ORDER Consider a
SJ-Tree with just two leaves representing query subgraphs g1 and
g2, with g1 representing the more selective left leaf. The above
strategy is not robust to the arrival order of matches. Assume g

0
1

and g
0
2 are subgraphs of Gd that are isomorphic to g1 and g2 re-

spectively. Together, g
0
1 ⇥ g

0
2 is isomorphic to the query graph Gq .

Because we are searching for g1 on every incoming edge, g
0
1 will

be detected as soon as it appears in the data graph. However, we
will detect g

0
2 only if appears in Gd after g

0
1. If g

0
2 appeared in Gd

before g
0
1 we will not find it because we are not searching for g2 all

the time.
We introduce a small change to address this temporal ordering

issue. Whenever we enable the search on a node in the data graph,
we also perform a subgraph search around the node to find any
match that has occurred earlier. Thus, when we find g1 and enable
the search for g2 on every subsequent edge arrival, we also perform
a search in Gd looking for g1. This ensures that we will find g2
even if it appeared before g1.

Algorithm 3 summarizes the entire process. Lines 2-3 loop over
all news edges arriving in the graph and update the graph. Next,
given a new edge es, for each node in the SJ-Tree, we check to see
if we should be searching for its corresponding subgraph around
es (lines 4-8). The DISABLED() function queries the bitmap in-
dex and returns true if the corresponding search task is disabled.
GET-QUERY-SUBGRAPH returns the query subgraph gqsub corre-
sponding to node n in the SJ-Tree (line 9). Next, we search for
gqsub using a subgraph-isomorphism routine that only searches for
matches containing at least one of the end-point vertices of es (u
and v, mentioned in line 5-6). For each matching subgraph found
containing u or v, we enable the search for the query subgraph
corresponding the sibling of n in the SJ-Tree. If n was not left-
deep most node in the SJ-Tree, then we also query the left sibling
to probe for potential join candidates (QUERY-SIBLING-JOIN(),
line 16). Any resultant joins are pushed into the parent node and
the entire process is recursively repeated at one level higher in the
SJ-Tree.

5. SJ-TREE GENERATION
Here we address the topic of automatic generation of the SJ-Tree

from a specified query graph. We begin with introducing key defi-
nitions, followed by the decomposition algorithm.

DEFINITION Subgraph Selectivity Given a large typed, directed
graph G, the selectivity of a typed, directed subgraph g with k-
edges (denoted as S(g)) is the ratio of the number of occurrences
of g and the total number of all k-edge subgraphs in G. Instances
of g may overlap with each other.

DEFINITION Selectivity Distribution The selectivity distribu-
tion of a set of subgraphs Gk is a vector containing the selectiv-
ity for every subgraph in Gk. The subgraphs are ordered by their
frequencies in ascending order.

We present a greedy algorithm (Algorithm 4) for decomposing
a query graph into its subgraphs and generating a SJ-Tree. Our
choice for the greedy heuristic is motivated by extensive survey
of the literature on optimal join order determination in relational
databases [10, 14, 21]. A key conclusion of the survey states that
left-deep join plans (or left deep binary trees in this case) is one
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Algorithm 3 LAZY-SEARCH(Gd, T, edges)
1: leaf -nodes =GET-LEAF-NODES(T )
2: for all es 2 edges do
3: UPDATE-GRAPH(Gd, es)
4: for all n 2 leaf -nodes do
5: u =src(es)
6: v =dst(es)
7: if DISABLED(u, n) AND DISABLED(v, n) then
8: continue
9: gqsub =GET-QUERY-SUBGRAPH(T, n)

10: matches =SUBGRAPH-ISO(Gd, g
q
sub, e)

11: for all m 2 matches do
12: if n = 0 then
13: ENABLE-SEARCH-SIBLING(n,m)
14: else
15: Mj = QUERY-SIBLING-JOIN(n,m)
16: p = PARENT(n)
17: for all mj 2 Mj do
18: UPDATE(p,mj)
19: ENABLE-SEARCH-SIBLING(p,m)

of the best performing heuristics. The above mentioned studies
point to a large body of research using techniques such as dynamic
programming and genetic algorithms to find the optimal join or-
der. Nonetheless, finding the lowest cost join order or using a cost-
driven join order determination remains an interesting problem in
graph databases, and the approaches based on minimum spanning
trees or approximate vertex cover can provide an initial path for-
ward.

Inputs to Algorithm 4 are the query graph Gq and an ordered set
of primitives M . Our goal is to decompose Gq into a collection
of (possibly repeated) subgraphs chosen from M . Entries of M
are sorted in ascending order of their subgraph selectivity. Given
a query graph Gq , the algorithm begins with finding the subgraph
with the lowest selectivity in M . This subgraph is next removed
from the query graph and the nodes of the removed subgraph are
pushed into a “frontier" set. We proceed by searching for the next
selective subgraph that includes at least one node from the fron-
tier set. We continue this process until the query graph is empty.
SUBGRAPH-ISO performs a subgraph isomorphism operation to
find an instance of gM in Gq . Algorithm 4 uses two versions of
SUBGRAPH-ISO. The first version uses three arguments, where
the second argument is a vertex id v. This version of SUBGRAPH-
ISO searches Gq for instances of gM by only searching in the
neighborhood of v. The other version accepting two arguments
searches entire Gq for an instance of gM . REMOVE-SUBGRAPH
accepts two graphs as argument, where the second argument (gsub)
is a subgraph of the first graph (Gq). It removes all edges in Gq

that belong to gsub. A vertex is removed from Gq only when the
edge removal results in a disconnected vertex.

5.1 Selectivity Estimation of Primitives
We propose computing the selectivity distribution of primitives

by processing an initial set of edges from the graph stream. For
experimentation purposes we assume that the selectivity order re-
mains the same for the dynamic graph when we perform the query
processing. This work does not focus on modeling the accuracy of
this estimation. Modeling the impact on performance when the ac-
tual selectivity order deviates from the estimated selectivity order
is an area of ongoing work.

Which subgraphs are good candidates as entries of M? Fol-
lowing are two desirable properties for entries in M : 1) the cost

Algorithm 4 BUILD-SJ-TREE(Gq,M)

1: frontier = ;
2: while |V (Gq)| > 0 do
3: gsub = ;
4: for all gM 2 M do
5: if frontier 6= ; then
6: for all v 2 frontier do
7: gsub =SUBGRAPH-ISO(Gq, v, gM )
8: break
9: else

10: gsub =SUBGRAPH-ISO(Gq, gM )

11: if gsub 6= ; then
12: frontier = frontier [ V (gsub)
13: Gq =REMOVE-SUBGRAPH(Gq, gsub)

for subgraph isomorphism should be low. 2) Selectivity estimation
of these subgraphs should be efficient as we will need to periodi-
cally recompute the estimates from a graph stream. Based on these
two criteria, we select single edge subgraphs and 2-edge paths as
primitives in this study. Computing the selectivity distribution for
single-edge subgraphs resolves to computing a histogram of vari-
ous edge types. The selectivity distribution for 2-edge paths on a
graph with V nodes, E vertices and k unique edge types can be
done in O(V (E + k2)) time. Algorithm 5 provides a simple al-
gorithm to count all 2-edge paths. In our experiments, computing
the path statistics for a network traffic dataset with 800K nodes and
nearly 130 million edges takes about 50 seconds without any code
optimization.

Algorithm 5 uses a Counter() data structure, which is a hash-
table where given a key, the corresponding value indicates the num-
ber of times the key occurred in the data. A Counter() is updated
via the UPDATE routine, which accepts the counter object, a key
value and an integer to increment the corresponding key count. We
iterate over all vertices in the input graph (Gd) (line 2). For an
given vertex v, we count the number of occurrences of each unique
edge type associated with it (accounting for edge directions). Line
8 iterates over all unique edge types associated with v. Next, given
an edge type e1 and its count n1, we count the number of combi-
nations possible with two edges of same type (

�
n
2

�
). Next, we com-

pute the number of 2-edge paths that can be generated with e1 and
any other edge type e2. We impose the LEXICALLY-GREATER
constraint to ensure each edge is factored in only once in the 2-edge
path distribution.

Note that we use a Map() function instead of simply using the
type associated with every edge. Most of our target applications
have significant amount edge attributes in the graphs. As an ex-
ample, in a network traffic graph we use the protocol information
to determine the edge property. Thus, each network flow with the
same protocol (e.g. HTTP, ICMP etc.) are mapped to the same
edge type. Each flow is accompanied by multiple attributes such
as source and destination ports, duration of communication etc..
Therefore, we can provide a hash function to map any user de-
fined edge properties to an integer value. Thus, for queries with
constraints on vertex and edge properties, a generic map function
factors in both structural and semantic characteristics of the graph
stream.

Counting the frequency for larger subgraphs is important. Given
a query graph with M edges, ideally we would like to know the
frequency of all subgraphs with size 1, 2, ..,M � 1. Collecting the
frequency of larger subgraphs, specifically triangles have received
a significant attention in the database and data mining community
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[19]. Exhaustive enumeration of all the triangles can be expensive,
specially in the presence of high degree vertices in the data. Ap-
proximate triangle counting via sampling for streaming and semi-
streaming has been extensively studied in the recent years [11]. We
foresee incorporation of such algorithms to support better query
optimization capabilities for queries with triangles.

Algorithm 5 COUNT-2-EDGE-PATHS(Gd)
1: P = Counter()
2: for all v 2 V (Gd) do
3: Cv = Counter()
4: for all e 2 Neighbors(Gd, v) do
5: et = Map(e)
6: Update(Cv, et, 1)

7: Et = Keys(Cv)
8: for all e1 2 Et do
9: n1 = Count(Cv, e1)

10: key = (e1, e1)
11: Update(P, key, n1(n1 � 1)/2)
12: for all e2 2LEXICALLY-GREATER(Et, e1) do
13: n2 = Count(Cv, e2)
14: key = (e1, e2)
15: Update(P, key, n1n2)

5.2 Query Decomposition Strategies
Algorithm 4 shows that we can generate multiple SJ-Trees for

the same Gq by selecting different primitive sets for M . We can
initiate M with only 1-edge subgraphs, only 2-edge subgraphs or a
mix of both. As an example, for a 4-edge query graph, the removal
of the first 2-edge subgraph can leave us with 2 isolated edges in
Gq . At that stage, we will create two leaf nodes in the SJ-Tree
with 1-edge subgraphs. For brevity we refer to both the second and
third choice as 2-edge decomposition in the remaining discussions.
Clearly, these 1 or 2-edge based decomposition strategies has dif-
ferent performance implications. Searching for 1-edge subgraphs
is extremely fast. However, we stand to pay the price with mem-
ory usage if these 1-edge subgraphs are highly frequent. On the
contrary, we expect 2-edge subgraphs to be more discriminative.
Thus, we will trade off lowering the memory usage by spending
more time searching for larger, discriminative subgraphs on every
incoming edge.

DEFINITION Expected Selectivity We introduce a metric called
Expected Selectivity, denoted as ˆS(Tk). Given a SJ-Tree Tk, the
Expected Selectivity is defined as the product of the selectivities of
the leaf-level query subgraphs.

leaves(Tk) returns the set of leaves in a SJ-Tree Tk. Given a
node n, VSG(T, n) returns the subgraph corresponding to node n
in SJ-Tree T . Finally, S(g) is the selectivity of the subgraph g as
defined earlier.

ˆS(Tk) =
Y

n2leaves(Tk)

S(VSG(Tk, n)) (1)

DEFINITION Relative Selectivity We introduce a metric called
Relative Selectivity, denoted as ⇠(Tk, T1). Given a 1-edge decom-
position T1 and another decomposition Tk, we define ⇠(Tk, T1) as
follows.

⇠(Tk, T1) =
ˆS(Tk)
ˆS(T1)

(2)

We conclude the section with discussion on two desirable prop-
erties of a greedy SJ-Tree generation strategy.

THEOREM 1 Given the data graph Gd at any time t, assume that
the query graph Gq is not guaranteed to be present in Gd. Then ini-
tiating the search for Gq by searching for grare where grare ⇢ Gq

and 8g ⇢ Gq||E(g)| = |E(grare)|, frequency(g) > frequency(grare)
is in optimal strategy.

PROOF The time complexity for searching for a O(1) for a 1-
edge subgraph and O(d̄v) for a 2-edge subgraph. Therefore, the
runtime cost to search for grare is same as any other subgraph of
Gq with the same number of edges. However, searching for grare
will require minimum space because it has the minimum frequency
amidst all subgraphs with same size. Therefore, searching for grare
is an optimal strategy.

e"

a" b"

d"c"

Figure 4: Example SJ-Tree used in proof of theorem 2.

THEOREM 2 Given a set of identical size subgraphs {gk} such
that [n

kgk = Gq , a SJ-Tree with ordered leaves gk � gk+1 �
gk+2 requires minimal space when frequency(gk 1 gk+1) <
frequency(gk+2).

PROOF By induction. Assume a SJ-Tree with three leaves as
shown in Figure 4. Following the definitions of SJ-Tree, this is a
left-deep binary tree with 3 leaves. Therefore, frequency(c) de-
noted in shorthand as f(c) f(c) = min(f(a), f(b)). Substituting
for the frequency of c, space requirement for this tree S(T ) =
f(a) + f(b) + f(d) +min(f(a), f(b)). Thus, the space require-
ment for this tree is minimum if f(a) < f(b) < f(c).

Now we can consider any arbitrary tree where Tn refers to a tree
with a left subtree Tn1 and a right child ln+2. Above shows that T1

constructed as above will have minimum space requirement, and so
will T2 if f(a) < f(b) < f(c) < f(d).

OBSERVATION 3 Given gk, a subgraph of query graph Gq , it is
efficient to decompose gk if there is a subgraph g ⇢ gk, such that
frequency(g) >

⇣
frequency(gk)

d̄|V (gk)|

⌘
, where d̄ is the average vertex

degree of the data graph and |V (gk)| is the number of vertices in
gk.

PROOF Given a graph g, the average cost for searching for an-
other graph that is larger by a single edge is d̄ multiplied by the
number of vertices in gk, and the proof follows.

Space Complexity The space complexity of the SJ-Tree can be
measured in terms of the storage required by each leaf in the tree.
The storage for any node in the tree is approximated by the prod-
uct of the corresponding subgraph size (measured as the number of
edges) and its frequency. Therefore, the space complexity of the
SJ-Tree is S(T ) =

P
k |E(gk)|frequency(gk). Given two sub-

graphs gsmall and gbig , where gbig contains gsmall, the frequency
of gsmall serves as an upper bound for gbig , assuming no over-
lapping edges. Therefore, we can assign each node in the tree to
a group, where one node in each group serves to approximate the
frequency of rest of the nodes in the group. Suppose gr(i) is the
cardinality of the i-th group. Trivially,

P
i gr(i) = NT , where NT

is the number of nodes in the SJ-Tree.
Therefore, given a query graph Gq and a SJ-Tree T express-

ing one possible query decomposition, we can estimate its space
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complexity as S(T ) =
P

i gr(i)|E(gi)|frequency(gi). There
is clearly a tradeoff between the accuracy of this estimate and the
computation required to obtain the necessary measurements. Ap-
proximating the space complexity in terms of single edge subgraphs
is computationally easiest, although it would be a very loose bound
when the frequency of a single edge subgraph is orders of magni-
tude higher than larger subgraphs containing that single edge sub-
graph. Realistically, we foresee the groups being composed of
unique 1-edge, 2-edge subgraphs and triangles (if it exists in the SJ-
Tree) and approximate all larger subgraph in the SJ-Tree assigned
to these groups.

5.3 Comparison with selectivity agnostic ap-
proaches

Our pattern decomposition approach based on relative selectivity
provides an optimal way to look for discriminate patterns compared
to existing approaches. For e.g, consider the generic path query
graph in 5(a). A DAG based decomposition approach [7] may
look either for complete path query or decompose it randomly as
shown in 5(b). As the source vertex(s1) in such a pattern may be
lot more frequent than sink v4, our selectivity based approach will
clearly identify the s2->s3->s4 pattern as being more selective and
start processing search from there, clearly this is more optimal than
searching for every pattern starting at s1->s2.

v1# v2# v3# v4#

S1#<#S2#<#S3#

v1# v2# v3# v3# v4#

v1# v2# v2# v3# v4#

(a)#

(b)#

(c)#

e1# e2# e3#

Figure 5: (a) Example path query. Si indicates the selectivity of
edge ei. (b) A selectivity agnostic decomposition. ( c ) Decom-
position using our selectivity based approach.

6. EXPERIMENTAL STUDIES
We perform experimental analysis on two real-world datasets

(New York Times 1 (Internet Backbone Traffic data 1) and a syn-
thetic streaming RDF benchmark. In interest of space, we include
result for CAIDA dataseti and RDF benchark only, NYTimes per-
formance being similar to CAIDA. The experiments are performed
to answer questions in the following categories.

1. STUDYING SELECTIVITY DISTRIBUTION What does the se-
lectivity distribution of 2-edge subgraphs look like in real
world datasets? What is the duration of time for which the se-
lectivity distribution or selectivity order of 2-edge subgraphs
remains static?

2. COMPARISON BETWEEN SEARCH STRATEGIES In the pre-
vious sections, we introduced two different choices for query
decomposition (1-edge vs 2-edge path based) and two differ-
ent choices for query execution (lazy vs non-lazy). How do
the strategies compare?

1http://data.nytimes.com
1http://www.caida.org

3. AUTOMATED STRATEGY SELECTION Given a dynamic graph
and a query graph, can we choose an effective strategy using
their statistics?

COMPARISON WITH OTHER APPROACHES Although other con-
tinuous subgraph query systems exist ( [7, 15], their objectives are
different. Both focus on distributed system implementations, and
explore aggregate queries or approximate queries. Also, their sup-
port for the type of graph is different from ours. Our test datasets
drawn from cyber security and social networks involve directed
graphs with labeled vertices and edges. We believe that the research
contributions complement each other; hence, we compare our im-
plementation with a non-incremental approach that performs sub-
graph isomorphism for the query graph (using VF2) on every new
edge in the dynamic graph. .

6.1 Experimental setup
The experiments were performed on a 32-core Linux system

with 2.1 GHz AMD Opteron processors, and with 64 GB mem-
ory. The code was compiled with g++ 4.7.2 compiler with -O3
optimization.

Given a pair of data graph and query graph, we perform either of
two tasks: 1) query decomposition and 2) query processing.

Query decomposition: Query decomposition involves loading
the data graph, collecting 1-edge and 2-edge subgraph statistics and
performing query decomposition using the selectivity distribution
of the subgraphs. The SJ-Tree generated by the query decomposi-
tion algorithm is stored as an ASCII file on disk.

Query processing: The query processing step begins with load-
ing the query graph in memory, followed by initialization of the
SJ-Tree structure from the corresponding file generated in the query
decomposition step. We initialize the data graph in memory with
zero edges. Next, edges parsed from the raw data file are streamed
into the data graph. The continuous query algorithm is invoked
after each AddEdge() call to the data graph.

6.2 Data source description
Summaries of various datasets used in the experiments are pro-

vided in Table 1. We tested each dataset with a set of randomly
generated queries. The following describes the individual datasets
and test query generation.

Network Traffic The dataset is an internet backbone traffic dataset
obtained from www.caida.org. CAIDA (Cooperative Associ-
ation for Internet Data Analysis) is a collaborative program that
provides a wide collection of network traffic data. We used the
“CAIDA Internet Anonymized Traces 2013 Dataset" for experi-
mentation. The dataset contains 22 million network traffic flow
(subsequently referred to as netflow) records collected over a one
minute period. We excluded the traffic to/from IP addresses match-
ing patterns 10.x.x.x or 192.168.x.x. These address spaces refer to
private subnets and a communication from a given IP address from
these spaces can actually refer to multiple physical hosts in the real
word. As an example, every internet service provider configures the
routers or machines inside a home network with IPs selected from
the private IP address range. Therefore, if we see a request from
192.168.1.1 to google.com, there is no way to determine the exact
origin of this communication. From a graph perspective, allowing
private IP address and the subsequent aggregation of communica-
tion will result in the creation of vertices with giant neighbor lists,
which will surely impact the search performance. A detailed list of
use cases describing subgraph queries for cyber traffic monitoring
are described in [12].

Social Media Stream Our final test dataset is a synthetic RDF
social media stream available from the Linked Stream Benchmark
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Figure 6: Edge type distribution shown with the evolution of the dynamic graph.

Table 1: Summary of test datasets
Dataset Type Vertices Edges

Internet Backbone Traffic Network traffic 2,491,915 19,550,863
LSBench/CSPARQL Benchmark RDF Stream 5,210,099 23,320,426

New York Times Online News 64,639 157,019

(LSBench) [1]. We generated the dataset using the sibgenerator
utility with 1 million users specified as the input parameter. The
generated graph has a static and a streaming component. The static
component refers to the social network with user profiles and so-
cial network relationships. The streaming component includes 3
streams. The GPS stream includes user checkins at various loca-
tions. The Post and Comments stream includes posts and com-
ments by the users, subscriptions by users to forums, and a stream
of “likes" and “tags". Finally, the photo stream includes informa-
tion about photos uploaded by users, and “tags" and “likes" as ap-
plied to photos.

6.3 Selectivity Distribution
Figure 6 shows the edge distribution plotted over time. X-axis

shows the number of cumulative edges in the graph as it is grow-
ing. The plotted distribution is not cumulative. The edge distribu-
tion is collected after fixed intervals. The interval is 10 thousand,
100 thousand and 1 million respectively. There are 4, 7, and 45
edge types in these datasets. The first half of the RDF dataset con-
tains data for a simulated social network. The second half contains
simulated data about the activities in the network such as posts, and
checkins at locations The shift in the edge distribution around the
mid point reflects these different characteristics. The key observa-
tion is that the relative order of different types of edges stays similar
even as the graph evolves.

There were 14, 62 and 676 unique 2-edge paths present in the
New York Times, netflow and LSBench datasets. Figure 7 shows
the 2-edge path distribution for the LSBench dataset. We found
a small number of 2-edge subgraphs to dominate the distribution
across all the datasets. Other datasets show a similarly skewed dis-
tribution, and was omitted for space. The skew is heaviest for the
LSBench dataset, which is expected given the higher number of
unique edge types and the larger size of the dataset.

The goal of this analysis was to observe the variability in the
selectivity distribution over time. The selectivity distribution is ex-
pected to vary over time. However, it is the relative order of the
unique single edge or 2-edge subgraphs that matters from the query
decomposition perspective. For each of the test datasets, we took
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(a) Synthetic social data stream in RDF

Figure 7: 2-edge path distribution in each test data set. Each
point on X-axis represents a unique 2-edge path and Y-axis
shows its corresponding count.

multiple snapshots of the selectivity order and found it to be stable,
except with fluctuations for the very low frequency components
(data points on the left end of the distributions in Fig. 7). Sig-
nificant changes in the selectivity order can adversely impact the
performance of the query. Estimating the duration over which the
selectivity ordering stays stable for a given data stream, quantifi-
cation of errors based on shift in the distribution, and adapting the
query algorithm to handle such shifts is reserved for future work.

6.4 Query Performance Analysis
This section presents query performance results obtained through

query sweeps on the network traffic and social network dataset.
We restrict the analysis to these two datasets for their larger size.
The analysis on New York Times dataset made available in the Ap-
pendix section in the interest of space. For each query, we collect
performance from 4 different query execution strategies obtained
by 1-edge or 2-edge decomposition of a query graph and the lazy
vs. track everything approach adapted by the query algorithm. The
following tags are used to describe the plots in the remainder of the
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paper: a) “Single": 1-edge decomposition, search tracks all match-
ing subgraphs in SJ-tree, b) “SingleLazy": 1-edge based query de-
composition, use “Lazy" approach to search, c) “Path": 2-edge de-
composition, search tracks all matching subgraphs in SJ-Tree, and
d) “PathLazy": 2-edge decomposition with “Lazy" search.

6.4.1 Network Traffic and LSBench
We present aggregated results for each query group for LSBench

and CAIDA. Both of these datasets are orders of magnitude larger
than New York Times and the scale allows us to magnify the dif-
ferences between multiple strategies.

QUERY GENERATION We generate both path queries and binary
tree queries for the netflow data. Figure 8 shows two decompo-
sitions of an example query. The vertex labels are fixed to type
“ip" and the edge types are randomly chosen from a set of 7 proto-
cols: ICMP, TCP, UDP, IPv6, AH, ESP and GRE. The binary tree
queries were generated following the test generation methodology
described in [16]. The LSBench dataset is tested with path queries
and n-ary trees. A list of valid triples (vertex type, edge type , vertex
type) is generated using the LSBench schema. A tree query is gen-
erated by randomly selecting an edge from the set of valid triples
and then iteratively adding valid new edges from any of the nodes
available. All our query graphs are unlabeled. Using netflow data
as an example, we do not generate a query that has a label associ-
ated with any of the nodes. In practice, we expect users to employ
labeled queries such as finding a tree pattern in the network traffic
where the root of the tree has a IP address (i.e. label) from a cer-
tain subnet. For social data, we may look for paths with specified
user ids (node labels) on the source and the destination nodes on
the path. Here, our experiments are motivated to study the impact
of subgraph distributional statistics on query processing.

ip# ip# ip# ip# ip#
ESP# TCP# ICMP# GRE#

ip# ip# ip# ip#
TCP# ICMP# GRE#

ip# ip# ip#
ICMP# GRE#

ip# ip#
GRE#

ip# ip#
ICMP#

ip# ip#
TCP#

ip# ip#
ESP#

(a)

ip# ip#

ip#
TCP#

ESP#
ip# ip#

ip#
GRE#

ICMP#

ip# ip# ip# ip# ip#
ESP# TCP# ICMP# GRE#

(b)

Figure 8: 1 and 2-edge based decompositions of a path query
on netflow traffic data.

COMPARISON WITH OTHERS In our previous work [3] we had
compared the performance of our implementation with the IncI-
soMatch algorithm proposed by Fan et al. [6]. Our IncIsoMatch
implementation was based on a variant of the well-known VF2 al-
gorithm [5].

SUMMARIZATION OF RESULTS All queries of the same type
(path or tree) and size (3-hop length or 5 nodes) are denoted as
a group. We generated 100 queries for each group and then elim-
inated ones that contained 2-edge paths not seen in the sampled

path distribution. This was done for two reasons; first, inclusion
of an unseen 2-edge path combination makes the query artificially
discriminative. Our goal is to observe query processing time as a
function of varying selectivity, so including unusually discrimina-
tive queries bias our studies. Second, when asked to generate a
path-based decomposition, our SJ-Tree generator resorts to gener-
ating a single-edge based decomposition when a query subgraph
contains an unseen 2-edge path. This would bias our comparison
between a path-based decomposition and single-edge based decom-
position. Finally, for all the “valid" queries we further sampled
them by the Expected Selectivity computed using 2-edge path dis-
tribution and reduced each group to a smaller set of queries that
provide a near uniform sampling of the Expected Selectivity from
the larger set. Finally, the reported runtime for a given strategy
(e.g. “PathLazy") is obtained by averaging the runtimes from the
reduced set of queries,

Figure 9a-d shows the query processing times collected for both
datasets. The size of the query processing window was fixed at
8M triples, and the performance statistics were collected at at the
middle and at the end of the graph stream. We profiled different
components of the query processing such as the time spent in per-
forming subgraph isomorphism and the time spent in updating the
SJ-Tree. The latter is largely composed of the time spent in looking
up the hash tables in various nodes of the SJ-Tree, performing joins
between partial matches and inserting new entries. We found that
the subgraph isomorphism operation (for 1 or 2-edge subgraphs)
dominates the processing time. Considering both classes of queries
with diameter 4 and 5, the subgraph isomorphism operation con-
sumes more than 95% of the total query processing time.

A general observation is that the performance of non-incremental
search by VF2 is found to be 10-100x slower. The Y-axis is plot-
ted in log scale, and we can see how the run times of the “Path"
and “Single" approaches rise exponentially as the query sizes are
increased. Overall, we find the “SingleLazy" and “PathLazy" are
the best performing search approaches. As the tree queries show,
the growth rate in the query processing time is much slower for the
“Lazy" variants. This conclusively demonstrates the effectiveness
of restricting the search to where a match is emerging, and growing
the match by starting from the most selective sub-query.

6.5 Analysis via Relative Selectivity
Figure 10 shows the distribution of relative selectivity for queries

with 4 edges across all three datasets. We picked query graphs with
4 edges to find a common basis for comparing different type of
queries (k-partite vs. path queries) across multiple datasets, and the
discussion is equally applicable to larger or different query class
combinations. The top subplot shows the relative selectivity of
10 k-partite queries from the New York Times data. For netflow
and LSBench, we randomly sampled 25 queries from the randomly
generated path query collection. As can be seen, the relative selec-
tivity is very low for the netflow dataset. Following the definition of
relative selectivity, its value is lowered when the path distribution
based selectivity is low. In other words, there are some paths in the
query which have very low probability of occurrence. Therefore,
the “PathLazy" approach is superior for such queries. Empirical
observation on larger path queries and other tree queries seem to
suggest two prominent clusters of relative selectivity values. The
first one typically ranges from 0.001 and above, and the second
one contains values that are smaller by multiple orders of mag-
nitude. This suggests a heuristic that “PathLazy" strategy could
be employed for queries with relative selectivity below 0.001, and
“SingleLazy" be employed for queries above 0.001.
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(a) Runtime for Path Queries on Netflow data.
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(b) Runtime for Tree Queries on Netflow data.
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(c) Runtime for Path Queries on LSBench data.
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(d) Runtime for Tree Queries on LSBench data.

Figure 9: Runtimes from Path and Tree Queries on Netflow
and LSBench.
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Figure 10: Distribution of Relative Selectivity across queries
with 4 edges in 3 datasets. Relative selectivity is shown on X-
axis in log scale.

7. CONCLUSION AND FUTURE WORK
We present a new subgraph isomorphism algorithm for dynamic

graph search. We analyzed multiple real-world datasets and discov-
ered that the distribution of 2-edge subgraphs are heavily skewed.
We further demonstrated with a “Lazy" search algorithm that a
query decomposition strategy exploiting this skew will be consis-
tently efficient. Finally, we concluded with a Relative Selectivity
based rule for selecting a search strategy.

The problem of continuous pattern detection is an emerging area,
and there is an open field to explore. While our 2-edge subgraph
based approach provides an initial foundation, deeper investiga-
tions are warranted for more accurate selectivity estimation. Sub-
sequent research can leverage on the significant body of work on
counting larger subgraphs such as triangles in streaming or semi-
streaming scenarios to obtain quantitative estimates of space com-
plexity of a given query decomposition. Adaptive query process-
ing is an important follow-up problem as well. A long standing
database query needs to be robust against shift in the data charac-
teristics. While we propose a fast algorithm for periodic recompu-
tation of the primitive distribution, we do not address the issues of
modeling the inefficiency from operating under a different selectiv-
ity order and migrating existing partial matches from one SJ-Tree
to another.
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APPENDIX
A. ANALYSIS OF DYNAMIC GRAPH SEARCH

ALGORITHM
At this point, it is probably obvious that different SJ-Tree struc-

tures can be generated from the same query graph (Figure 8). While
multiple factors can lead to generation of different SJ-Trees, one
primary factor is our choice for granularity of decomposition, the
size and the structure of the subgraphs we decompose the query to.

Henceforth, we often refer to these set of small subgraphs as search

primitives or simply primitives. As a first step to understand the
speed-memory tradeoff associated with different choices for prim-
itives, we begin with the complexity analysis of the dynamic graph
search described in Algorithm 1 and 2. A key operation in Algo-
rithm 1 is the process of subgraph isomorphism around every new
edge in the graph. Therefore, we exclusively focus on the complex-
ity analysis in terms of 1-3 edge subgraphs as candidates for search
primitives.

SINGLE EDGE SUBGRAPHS When the query graph (gqsub in Al-
gorithm 1, line 5) contains a single edge, checking if an edge from
the data graph (es) matches the query edge require comparing the
types and potentially other attributes of the edges. Depending on
the query constraint, we may need to look up the node label to
perform a string comparison or evaluate a regular expression. The
node labels or any other node-specific properties are stored in an
array leading to constant time access to node labels. Therefore, a
single-edge query can be matched in O(1) time.

TRIADS Assume that the query graph is a triad with three ver-
tices v1, v2 and v3, and edges ordered as e1 = (v1, v2), e2 =
(v2, v3), e3 = (v3, v1). For any edge e in the data graph, we can
detect a match with e1 in constant time. If e is matched, we search
the neighborhood of the vertex that matches with v2 to search for
e2. Denoting this vertex as v

0
2, the cost of this second level of search

is O(degree(v
0
2)). In case of a 3-edge subgraph, each of the suc-

cessful second level searches proceed to find a match for the third
edge. Thus, the cost of a 2-edge subgraph is O(degree(v

0
2)) and

a 3-edge subgraph is O(degree(v
0
2) ⇤ degree(v

0
3)). We can refine

these estimates to obtain an average cost of the search as O(d̄2) for
a 2-edge subgraph and O(d̄2d̄3) for a 3-edge subgraph, where d̄2
and d̄3 are the average degree of the vertices in the graph for the
types of v2 and v3.

The next step is to estimate a cost for the SJ-Tree update opera-
tion (Algorithm 2). We begin with the hash-join operation (Algo-
rithm 2, line 7). Assume the frequency of a graph giq is ni, where
the frequency of a subgraph is defined as the count of its instances
over an edge stream of length N . Therefore, over N edges, we can
expect O(n1) matches for g1q and O(n2) matches for g2q . There-
fore, H2 (hash table associated with the SJ-Tree node representing
g2q ) will be probed for a match O(n1) times over N edges and H1

(associated with the SJ-Tree node representing g1q ) will be probed
O(n2) times within the same period.

If we knew the frequency of Gq , henceforth referred as fS(Gq),
then we can also estimate the number of new subgraphs that will be
produced as the result of the hash-joins. Given that the frequency of
the larger subgraph can not exceed that of the more selective com-
ponent we can approximate O(n(Gq)) ' min (O(n1), O(n2))).
Therefore, the average work for every incoming edge in the graph
can be expressed as,�
fS(g

1
q) + fS(g

2
q) +O(n1) +O(n2) +min (O(n1), O(n2)))

�
/N .

The Hash-Join combined with leaf level searches provides the
simplest example of a SJ-Tree, a binary tree with height 1. In this
section, we analyze the time complexity of the query processing as
it happens in a multi-level SJ-Tree. Given any non-leaf node n, we
can obtain the expression for average work by adapting the com-
plexity expression shown above. Note that if a child of n, denoted
by nc, is not a leaf level node but an internal node, then the term
corresponding to the search cost (fS(g)) disappears. Additionally,
we can replace the search cost with the cost corresponding to the
average work incurred by the subtree rooted by nc. Therefore,
given a SJ-Tree (Tsj) the average work (C(Tsj)) can be obtained
by recursive computation from the root. C(Tsj) = C(root(TSJ))
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