
Action Recommendation for Cyber Resilience

Sutanay Choudhury, Luke Rodriguez,
Darren Curtis, Kiri Oler, Peter Nordquist

Pacific Northwest National Laboratory
firstname.lastname@pnnl.gov

Pin-Yu Chen
University of Michigan Ann

Arbor
pinyu@umich.edu

Indrajit Ray
Colorado State University

indrajit@cs.colostate.edu

ABSTRACT
This paper presents an unifying graph-based model for represent-
ing the infrastructure, behavior and missions of an enterprise. We
describe how the model can be used to achieve resiliency against
a wide class of failures and attacks. We introduce an algorithm
for recommending resilience establishing actions based on dynamic
updates to the models. Without loss of generality, we show the ef-
fectiveness of the algorithm for preserving latency based quality of
service (QoS). Our models and the recommendation algorithms are
implemented in a software framework that we seek to release as an
open source framework for simulating resilient cyber systems.

Categories and Subject Descriptors
H.1.m [Information Systems]: Models and Principles

Keywords
cyber security, cyber resilience, recommendation engine

1. INTRODUCTION
With cyber defenders waging an asymmetric war against cyber

attackers and, for all practical purposes appearing to be loosing, re-
searchers around the world are increasingly looking into designing
resilient cyber infrastructures that can survive not only stochastic
failures but also targeted attacks. Informally, resilience can be de-
fined as the ability of an organization to continue to function, even
though it is in a degraded manner, in the face of impediments that
affect the proper operation of some of its components [5]. Imped-
iments can be randomly occurring failures of software services or
hardware systems in an enterprise, or it may be unavailability of
services or systems as the consequence of a cyber attack.Cyber re-
silience borrows from the paradigm of fault-tolerance in informa-
tion systems such as, the Internet or distributed computing plat-
forms where failures of components are quite common. However,
there are significant differences. Cyber resilience goes much be-
yond cyber fault-tolerance to require robustness against targeted
attacks. It is easier to model and reason about fault-tolerance when
failures (such as a that of a router on Internet or node in a compute

c© Association for Computing Machinery. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of the United
States government. As such, the United States Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only. Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3821-9/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2809826.2809837.

cluster), system objectives (such as routing a packet or finishing
a computation) and how the former affect the latter are well de-
fined. A cyber enterprise, on the other hand, is an elaborate web
of applications, software, storage and networking hardware with
complex dependencies among them some of which are often be
loosely defined. Each organization builds its own such web based
on its mission or organizational objectives (We refer to this as the
enterprise-web E). The resultant webs are drastically different for
every organization although some high-level similarities exist be-
tween organizations with similar objectives, such as universities.
Although their building blocks may have been designed to be ro-
bust against failures, it is not easy to answer if the enterprise-web
as a whole is resilient. Therefore, developing a unifying model or a
common framework for performing what-if analysis is a necessary
first step towards quantification of organizational resilience. Such
a model would allow one to identify resilience bottlenecks and/or
recommend actions to make the system resilient.

1.1 Motivation
We use a fictional small e-commerce company named VISR as

our running example (Figure 1). VISR has a CEO, an intern, and
a team of developers and HR professionals. Its physical network
is divided into two subnets. R1-R3 are routers connecting these
subnets. All the users are mapped to the subnet on right, while
its in-house services are hosted on the left subnet. VISR has three
missions:

1. A sales mission, as online sales is its primary source of rev-
enue. This necessitates guaranteeing the availability of DB2
and the integrity of information inside it.

2. CEO’s strategic mission. CEO’s workstation has intellec-
tual property information whose confidentiality and integrity
needs to be guaranteed.

3. Product development mission which requires availability of
DB1 and DB3 to the Dev group, HR group and the intern.

With the missions being defined, we raise the big question: What
does mean for VISR to be resilient? We outline a number of com-
mon scenarios in Table 1 that companies such as VISR needs to
address on a day to day basis. How can a unified model be used
to address a large class of scenarios and determine real-life actions
such as turning off systems, disabling users or selectively blocking
communication across machines?

1.2 Our approach
Unfortunately, there has been very limited work done in this area

and we take the first step to fill the gap. Towards this end, we use
a graph theoretic approach to develop an unifying model for rep-
resenting the infrastructure, behavior and missions of an enterprise

3

Table 1: Description of impediments that can be addressed by the Enterprise-Web model

Failure/Attack Description Impacts Resilient System Actions
Denial of Service Disrupts services via overloading Gapp Modify Gapp . Introduce an intermediary layer

between the attacker and the target service,
or selectively block communication between
server and a subset of clients.

Software/hardware
failures

Web server DB2 fails as application runs out of
memory or a power glitch disables R2.

Gphy ,
Gapp

Harden important nodes in Gphy , Gapp. Add
redundancy into the systems to push out the “in-
flection point" shown in Figure 2 .

Point-of-Sale/Pass-
the-hash attack

HR1 is compromised. Flat network facilities at-
tacker move to other systems.

Gaccess Segment Gaccess. The network should be as
segmented as possible. The trade-off between
a hub and spoke structure (flat network) vs seg-
mented will be additional cost and complexity
for extra security.

Web-Application
Attack/Phishing

Intern clicks on a phishing email by mistake. Mal-
ware gets installed on his computer and starts com-
municating with command and control.

Gapp,
Gaccess

Spot command and control traffic, data exfiltra-
tion in Gapp. . Segment Gaccess.

Figure 1: Our motivating example: A fictitious small e-commerce
company named VISR.

and the dependencies among them (section 2). We also point out
how the model is built from real world data sources (netflow, active
directory, event logs etc.). We discuss how a diverse class of imped-
iments can be handled by operations on the model (Table 1). Next,
we present the resilient action recommendation as an optimization
problem (section 3, equation 4) and introduce an algorithm (Al-
gorithm 1). Without loss of generality, we show how the algorithm
can achieve resiliency against attacks that causes degradation of the
QoS of web services. We present our simulation approach in detail
in section 4, followed by experimental results in section 5.

1.3 Contributions
We make the following major contributions in this work.

1. We introduce a multi-network model to capture the behavior
of the enterprise. We show the model is expressive to address
diverse impediments and act upon to achieve resiliency.

2. We introduce an algorithm for recommending resilience ac-
tions based on dynamic updates to the model. We establish a
set of constraints that need to be satisfied for resiliency.

3. We demonstrate the validity of the algorithm through simu-
lations and experiments.

2. MODELING THE ENTERPRISE-WEB
We begin with a formal definition of a mission.
DEFINITION 1. MISSION A mission M = (A,U ,R) is a 3-

tuple set of applications A driven by a set of users U on a set of
resources R.

Next we describe the enterprise-web model as a set of graphs, E
= (Gphy, Gapp, Gaccess, Ghost).

DEFINITION 1 We define Gphy = (Vmac, Elink) as the simple
graph simulating the physical network.

This network is likely to belong to one of the following topolo-
gies: a) star network where a central node is connected to the rest
of the nodes in the graph, b) a ring with trees connected, or c) a
hierarchical composition of the above. We build this graph using
traceroute-derived data and schemas obtained from system admin-
strators.

DEFINITION 2 We define Gapp = (Vapp, Vuser, Eflow) as a
directed multigraph representing the application level behavior.

This models all requests made by either a user or an application
to an application node in the graph, of which there may be multiple.
We build this graph from network traffic (netflow) data.

DEFINITION 3 We define Gaccess = (Vuser, Vmac, Eperms) as
a directed bipartite graph where each edge inEperms indicates that
a user in Vuser has access to a host in Vmac.

These permissions allow us to keep track of which machines
could be compromised by a single malicious user, or how an at-
tacker can laterally move through the network. We build this graph
from inferring information from event logs, audit logs or active di-
rectory data.

DEFINITION 4 We define Ghost = (Vapp, Vmac, Ehost) as a
directed bipartite graph connecting applications in Vapp to the ma-
chines in Vmac that they are hosted on.

Connecting them in this way allows us to properly determine
which services an attack on a particular node might degrade, or
vice-versa. We build this graph from event logs.

Using these different views of the entire enterprise-web allows
us to focus on which types of assets and connections are critical to
detecting and mitigating different kinds of attacks. For example,
addressing a denial of service attack (Table 1, row 1) will require

4

using Gapp only. We exclusively focus on this use case in the next
section and remainder of the paper.

3. RECOMMENDATION ENGINE
OBJECTIVE The recommendation engine is an automated pro-

cess that takes two sets of data as input: a steady-state description
of the system along with a current snapshot. The process then cal-
culates metrics of the system health such as latency distribution,
frequency of authentication requests by processing a subset of four
graphs that make up E . If degradation is detected, the steady-state
and current snapshots are compared in order to make a recommen-
dation of an action to take that is tailored to restoring that particular
metric of system health.

Given the enterprise at time t, E(t), the occurrence of an imped-
iment ∆, drives the system to an intermediate state E(t + δt). If
Rk(E(t)) > Rk(E(t + δt)), where Rk are metrics derived from
latency or authentication statistics, then a resilient system will need
to act. An actionA is a resiliency preserving action if it transforms
the system state such that Rk(E(t + 1)) > Rk(E(t + δt)), where
E(t+ 1) = A(E(t+ δt)).

In this paper we demonstrate a proof-of-concept recommenda-
tion engine that only uses one metric and looks specifically at the
quality of service of the network applications by examining Gapp.

The action recommendation engine works by observing the net-
work flow between users and servers and inferring the server load
(i.e., requests to be processed) through a latency-request function
which is associated with the server capability. The output is a score
indicating the recommendation of blocking the network flow from
a subset of users. Borrowing from the concepts of stress and strain
in mechanical problems, let xj denote the number of current re-
quests at server j and let xsj denote the number of requests at the
steady state for server j. Figure 2 shows a critical request value
(i.e., the knee point) above which the latency has a surge increase
for server j is denoted by x∗j . Below the critical request value x∗j ,
the latency grows linearly with the increase of request.

The latency-request function fj for server j takes the form

fj(xj |x∗j) =

{
ajxj + dj , if xj < x∗j ;
cj · (xj − x∗j)bj + ajxj + dj , if xj ≥ x∗j ,

(1)

where the latency-request function is characterized by the parame-
ters aj , bj , cj , dj and x∗j . An illustration is shown in Fig. 2.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

of requests

la
te

n
c
y

observed latency

inflection point

inferred # of requests

Figure 2: Illustration of the latency-request function. The inflection
point is caused by the critical request value. The number of requests
in a server is inferred via the observed latency and the latency-
request function.

It is easy to check that fj is a differentiable convex function with
respect to xj for any aj ≥ 0, bj ≥ 1, cj ≥ 0 and dj ≥ 0. From (1)
the gradient of fj at xj is

∇fj(xj |x∗j) =

{
aj , if xj < x∗j ;
bjcj · (xj − x∗j)bj−1 + aj , if xj ≥ x∗j .

(2)

Let nuser and nserver denote the number of users and servers,
respectively. We denote r = [r1, r2, . . . , rnuser]T as an nuser × 1
binary column vector. ri = 1 if the network flow from user i is
recommended to be blocked; otherwise ri = 0. Let A denote
the nuser × nserver matrix where its entry [A]ij characterizes the
number of requests between user i and server j. Essentially A is
the matrix representation of Gapp, and since we are only dealing
with Gapp in this paper, we use the notation A instead of Aapp

for the sake of brevity. When blocking users according to r, the
number of removed requests at server j can be expressed as∑

i:ri=1

Aij =

nuser∑
i=1

Aijri = rTAej , (3)

where ej is a canonical column vector such that all entries of ej
are zero except its j-th entry being 1. Therefore when users are re-
moved according to r, the latency of server j can be represented as
fj(xj − rTAej |x∗j). Let hj(·) be a nondecreasing differentiable
convex function such that hj

(
fj(xj − rTAej |x∗j)− fj(xsj |x∗j)

)
evaluates the cost of latency changes between the subsequent la-
tency fj(xj − rTAej |x∗j) and the steady state latency fj(x

s
j).

Furthermore, we incorporate user priorities into the model such
that each entry in the nuser × 1 nonnegative column vector q =
[q1, q2, . . . , qnuser]T reflects the cost of removing an user.

By relaxing r to be real-valued in [0, 1]nuser , we formulate the
action recommendation problem as an optimization function

minimize
nmac∑
j=1

hj
(
fj(xj − rTAej |x∗j)− fj(xsj |x∗j)

)
+ λ · g(r) + β · qT r

subject to ri ∈ [0, 1] ∀ 1 ≤ i ≤ nuser, (4)

where g(r) is the regularization function on r and λ ≥ 0 is the
regularization parameter for g(r). The term qT r specifies the cost
of user removal according to r and β ≥ 0 is its regularization pa-
rameter.

Here we assume hj(x) takes the form

hj(x) =

{
0, if x < 0;
xφj , if x ≥ 0,

(5)

for any φj > 0. Therefore the latency cost between current state
and the steady state hj

(
fj(xj − rTAej |x∗j)− fj(xsj |x∗j)

)
is zero

if the subsequent latency fj(xj−rTAej |x∗j) is less than the steady
state latency fj(xsj |x∗j), and hj

(
fj(xj − rTAej |x∗j)− fj(xsj |x∗j)

)
increases with fj(xj − rTAej |x∗j) when fj(xj − rTAej |x∗j) ≥
fj(x

s
j |x∗j). The regularization function g(r) is set to be the `1

norm ‖r‖1 =
∑nuser
i=1 |ri|, which is a non-smooth convex sur-

rogate function that promotes sparsity in r. That is, the solution
suggesting few user removals will be preferred for the optimization
problem. Let∇hj(x) denote the gradient of hj at x and let

H(r) =

nmac∑
j=1

hj
(
fj(xj − rTAej |x∗j)− fj(xsj |x∗j)

)
. (6)

5

Then the gradient of H at r can be expressed as

∇H(r) = −
nmac∑
j=1

∇hj
(
fj(xj − rTAej |x∗j)− fj(xsj |x∗j)

)
· ∇fj(xj − rTAej)Aej , (7)

where

∇hj(x) =

{
0, if x < 0;
φj · xφj−1, if x ≥ 0.

(8)

It can be shown that H(r) is a differentiable convex function with
respect to r.

The optimization problem can be solved via proximal algorithms
such as the fast Iterative shrinkage thresholding algorithm (FISTA)
[1]. The action recommendation algorithm is summarized as fol-
lows. In practice the current request xj and steady state request
xsj are inferred via the observed latency average and the specified
latency-request function fj as described in Fig. 2. The following
functions are used in the action recommendation algorithm:

F (y) =

nmac∑
j=1

hj
(
fj(xj − yTAej |x∗j)− fj(xsj |x∗j)

)
+ λ‖y‖1 + βqTy; (9)

QL(y, z) =

nmac∑
j=1

hj
(
fj(xj − zTAej |x∗j)− fj(xsj |x∗j)

)
+

nmac∑
j=1

(y − z)T (∇H(r) + βq)

+
L

2
‖y − z‖2 + λ‖y‖1 + βqT z. (10)

Tα : Rn → Rn is the shrinkage operator defined by

[Tα(x)]i = (|xi| − α)+ sgn(xi), (11)

where [Tα(x)]i is the i-th element of Tα(x), (x)+ = max{0, x},
and sgn(x) is the sign function of x.

Algorithm 1 Action Recommendation Algorithm

Input: latency-request function fj with parameters
{aj , bj , cj , dj , x∗j}nserver

j=1 , latency cost function {hj}nserver
j=1 ,

inferred current request xj , inferred steady state request
{xsj}nserver

j=1 , user-server request matrix A, regularization
parameters λ, β, stopping criterion ε
Output: score vector of action recommendation r
Initialization: r0 ∼ unif[0, 1]nuser . Take some L0 > 0 and
η > 1. Set y1 = r0, t1 = 0, k = 1.
Step k :
1. Find the smallest nonnegative integer ik such that with
L̄ = ηikLk−1 =: 1

sk
and ỹk = yk − sk∇H(yk),

F (Tλ·sk (ỹk)) ≤ QL̄ (Tλ·sk (ỹk),yk)
2. rk = Tλ·sk (ỹk)

3. rk =
(

rk
maxi[rk]i

)
+

4. tk+1 =
1+
√

1+4t2
k

2

5. yk+1 = rk +
(
tk−1
tk+1

)
(rk − rk−1)

6. k = k + 1
Repeat Step k until ‖rk − rk−1‖2 ≤ ε

The operation rk =
(

rk
maxi[rk]i

)
+

is a projection onto the fea-

sible convex set rk ∈ [0, 1]nuser . To mitigate the effect of random
initialization vector r0 which is drawn uniformly in [0, 1]nuser , one
can perform the action recommendation multiple times and take the
averaged results as the final score vector.

4. SIMULATION FRAMEWORK
Experimental evaluation of resilience demands the ability to do

the following: A) simulate steady state behavior, B) simulate im-
pediments, and C) observe the system responding to the impedi-
ments. We did not find any existing data source that contains all
three phases of resilient behavior. Using Denial of Service attacks
(DoS) an example, there are many publicly available network traffic
data sources capturing a DoS attack. However, we could not find
any open dataset that captures the period of attack and the target
system’s subsequent recovery. Observing this dynamism is critical
to quantitative studies of resilience and provides the motivation to
develop a new simulator.

Our simulator supports a host of random graph generation tools,
such as those available in NetworkX in Python. These graphs could
be generated to represent the different components of our system,
and then stitched together to create our model. However, while the
kinds of graphs available to be randomly generated can be represen-
tative of many kinds of complex systems, we found that they did not
accurately reflect the structure of our cyber networks. Therefore,
we chose to use a pre-determined network configuration to build
the model and execute our testing. We developed a modeling lan-
guage that allows us to describe the behavior of our test company
in a configuration file. Next, our code processes the configuration
file and generates a series of snapshots of data conforming to the
model. The data output is similar to network traffic flow (also re-
ferred as netflow) datasets captured in real environment. The phys-
ical topology, users, and running applications remain unchanged
through the entirety of our simulation, and we systematically ran-
domize the output from the simulation.

We make a few assumptions about the nature of netflow data.
First, we assume that all requests are roughly the same size, and
thus assign them byte-sizes from a normal distribution with a mean
of 50 and standard deviation of 5. More complicated, however, is
the question of how to model flow duration or latency. Here we
use the latency-request function in (1) for simulation. For server
j, the independent variable xj in the function is the number of re-
quests currently being processed by the system receiving the re-
quests. To simplify, we assume that all systems share the same
parameters, i.e., (aj , bj , cj , dj , x

∗
j) = (10−4, 4, 10−1, 10−1, 100)

for all servers.
Of particular note is the value of x∗j , which determines the point

of inflection at which the quality of service of the system beings to
degrade quickly, as the latency of requests increases steeply. We
add an element of uncertainty by using this equation to determine
the mean of a normal distribution with standard deviation equal to
one tenth of the mean, and draw a duration from this distribution.
This is done by determining how many requests are currently being
processed by a machine at the point at which a new flow is to be
generated to it, and then calculating (1) for this value of xj . To
model the distribution of netflow requests through time, we first
determine which users will be using which applications. Once this
has been determined, 400 requests are put in a queue to be gener-
ated across the 200 seconds of model time with exact times chosen
uniformly at random. The model then steps through these requests
sequentially according to the randomly picked start time, with its
duration assigned as described in the previous paragraph. This pro-

6

Figure 3: Plot for x∗j = 100 for all j, with and without restorative
action.

Figure 4: Plot for x∗j = 50 for all j, with and without restorative
action.

vides the base model on top of which attacks and restorations can
be implemented.

5. EXPERIMENT AND RESULTS

5.1 Impact on recommendation on resilience
For a first pass at attack and system response simulation, we in-

sert a denial-of-service (DOS) type attack by an external user (Ex-
ternal in Figure 1) beginning at time 50 on the web server (DB2).
At this point, the external user makes 1000 requests to the website
host per second over the course of 5 seconds. This has the effect
of disrupting all traffics to the web-server machine, which also re-
duces the quality of service of the email application hosted on DB2.
The number of requests processed by the system is inferred by the
average median durations and the latency-request function over all
completed requests between users to a server. For the recommen-
dation engine we set the regularization parameters to be λ = 10
and β = 1. Uniform user priority is used such that the vector q is
a vector of all ones.

In the event that this is successfully detected by the recommen-
dation engine, the action taken is to block the external user from
making any more requests to the web application, and terminating
any pending requests made by that user. Since the recommenda-
tions are returned in the form of a vector of< user, score > pairs,
where 0 ≤ score ≤ 1, we must decide when this action should
be taken. For this test we assign a weight to each user representing
how willing we are to take action and disconnect them. We choose
a value of 2 for the external user, 1 for the CEO, and 1.5 for all
other users. If the product of this value and the score returned by

Figure 5: Plot for x∗j = 200 for all j, with no action taken.

the recommendation engine is at least 1, then we take action against
that user. For example, if the external user had a score of 0.8, we
would take action against them. However, if the CEO had the same
score, we would not take action.

For the experiment itself, we generated data from a fixed seed
using three different latency functions (Equation (1)), varying only
the location of the point of inflection x∗j . We start with x∗j = 100
for all j. We first run the model through the entirety of the scenario
taking no action, and monitor the health of the web server by ob-
serving the average throughput over time (measured as numbytes

duration
)

for all flows that terminate during a given one-second time win-
dow (Figure 3). We see that the throughput of the system drops
severly when the attack first occurs, and then it appears to alter-
nate between recovery and crashing again. This apparent recovery
is an artifact of the fact that we are observing only the flows that
terminate during a certain time window, so there may still be many
pending requests to the server that are not being taken into account.
During the periods of “recovery”, a few flows have been created
with shorter duration (and therefore higher throughput), but then
there are no flows that terminate in the next windows, providing a
throughput of zero. This is very unstable and undesirable behavior.
In contrast, Figure 3 shows the throughput of the system when ac-
tion is taken as recommended by the recommendation engine. We
see the same drop in service that we did previously, but our action
effectively blocks the degredation from continuing and restores the
state of the system to normal.

Figure 4 shows the same two plots for the case where x∗j =
50 for all j. We see that this has very little effect on the overall
story observed by this metric. It is possible that if we refined the
observation window for our recommendation engine, we would be
able to catch the attack earlier in this case. In Figure 5 we see the
effect of moving to x∗j = 200 for all j. In this case, we have made
our system more robust, and it can handle the DOS attack from the
external user without needing to take any action. Thus we never
see the degradation of quality of service.

5.2 Effect of user priority on the recommen-
dation

We investigate the effect of user priority vector q on the recom-
mendation scores by considering two different user priority config-
urations: one adopting uniform priority (i.e., qi = 1 for all i) and
one adopting differentiated priority. For the differentiated priority
we set the priority value of the external user to be 5 and set the
priority values of other users to be 0. The results are shown in the
following table. In the current window only two users (External
and Dev3) are communicating with an overloaded server. External
has sent more requests than Dev3 and blocking either of the users

7

Table 2: Recommendation scores with respect to different user pri-
ority vector q. The results are averaged over 50 runs.

uniform user priority differentiated user priority
user score score

External 0.86 0.16
Dev3 0.14 0.84
others 0 0

can restore the system back to the steady state. Observe that in the
case of uniform user priority, the score of External is significant
due to heavy requests. However, as we impose more user priority
on External, the score of Dev3 becomes significant and the score of
External is drastically reduced. In both cases, blocking other users
will not mitigate the server’s load. The results demonstrate the ca-
pability of the recommendation engine that the output results can
provide accurate recommendations and reflect the effect of differ-
entiated user priority.

6. RELATED WORK
We are focused on the problem of determining dynamic actions

to achieve resiliency with regards to failure of services or hard-
ware, or system compromises. Identifying optimal design strate-
gies that address widely ranging system objectives is a major re-
search theme. Examples of such work include optimal hardening;
given a limited budget, such works [3] outline the approach to-
wards identifying software or hardware components that should re-
ceive the newest patches or benefit from additional redundancy. Hu
et al. [4] explores the well-defined problem of optimal controller
placement in software defined networks. Moving target defense [9]
and service migration in cloud computing are two strongly related
areas. [7] formulate a cloud-based service security model that in-
corporates cloud-specific features such as virtual machine (VM)
migration and compatibility of the migration. The authors propose
a probabilistic service deployment strategy that exploits the dynam-
ics and heterogeneity of attack surfaces. Okhravi et al. [6] evaluate
dynamic platform techniques as a defense mechanism. Particularly,
we draw inspiration from their experiment setups for performing
quantitative experiments for resilience use cases. From a graph the-
oretic point of view, modifying a graph to improve its resilience, or
more specifically robustness has been studied by Chan et al. [2].
The authors use connectivity of the network as an objective func-
tion for robustness and propose algorithms to modify the graph by
adding or deleting edges to control robustness. Ramuhalli et al. [8]
describe a mathematical formulation for development and evalu-
ation of autonomous reconstitution algorithms in dynamic cyber
environments.

7. DISCUSSION AND FUTURE WORK
In this paper, we took the first steps towards developing a formal

methodology to reason about the resiliency of a complex enterprise-
web. We presented an unifying graph-based model for represent-
ing the infrastructure, behavior and missions of an enterprise and
the dependencies among them. The big appeal of this approach is
that it allows ingesting multiple data sources such as netflow, event
logs etc. into one model, reason about actions in the model space
and then transform actions determined in the model space such the
deletion of an edge in a graph to a real world action such as block-
ing communication between a client and a server. We show how
metrics computed from the model are utilized to implement an al-
gorithm for recommending resilience establishing actions. We for-

mulate a set of necessary constraints that need to be satisfied for
a system to be resilient. We demonstrate the validity of the con-
straints and effectiveness of the algorithm through simulations and
experiments.

At this stage, our model is somewhat simplistic. One of our ob-
jectives was to demonstrate the feasibility and advantages of us-
ing a graph-based approach for reasoning about system resiliency
at which, we believe, we had been successful. Real-world situa-
tions involve much more complex dependencies including but not
limited to conditional dependencies, cause-consequence dependen-
cies, and temporal dependencies. Our immediate next step is to
investigate such dependencies. The current model is also determin-
istic. One option is to use probabilistic graphical models for model
representation and estimate probability values associated with mis-
sion events in a dynamic manner. In this context, we plan to de-
velop quantitative metrics for quantifying the damage to mission
continuity, cost to attack mission, and cost of implementing secu-
rity hardening measures to mission quality of service. Lastly, we
have not yet studied the effect of organizational policies on sys-
tem resiliency. It is entirely possible that recommendations sug-
gested by our methodology cannot be executed in practice because
of different unique organizational policies and business relation-
ships. Future work involves augmenting the current model to allow
modeling of such policy based decision making.

8. ACKNOWLEDGMENTS
Presented research is funded by the Asymmetric Resilient Cyber

Security initiative at Pacific Northwest National Laboratory, which
is operated by Battelle Memorial Institute.

9. REFERENCES
[1] A. Beck and M. Teboulle. A fast iterative

shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183–202, 2009.

[2] H. Chan, L. Akoglu, and H. Tong. Make it or break it:
Manipulating robustness in large networks. SIAM, 2014.

[3] R. Dewri, I. Ray, N. Poolsappasit, and D. Whitley. Optimal
security hardening on attack tree models of networks: a
cost-benefit analysis. International Journal of Information
Security, 11(3):167–188, 2012.

[4] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng. On
reliability-optimized controller placement for
software-defined networks. Communications, China, 2014.

[5] I. Linkov, D. A. Eisenberg, K. Plourde, T. P. Seager, J. Allen,
and A. Kott. Resilience metrics for cyber systems.
Environment Systems and Decisions, 33(4):471–476, 2013.

[6] H. Okhravi, J. Riordan, and K. Carter. Quantitative evaluation
of dynamic platform techniques as a defensive mechanism. In
Research in Attacks, Intrusions and Defenses. Springer, 2014.

[7] W. Peng, F. Li, C.-T. Huang, and X. Zou. A moving-target
defense strategy for cloud-based services with heterogeneous
and dynamic attack surfaces. In Communications (ICC), 2014
IEEE International Conference on. IEEE, 2014.

[8] P. Ramuhalli, M. Halappanavar, J. Coble, and M. Dixit.
Towards a theory of autonomous reconstitution of
compromised cyber-systems. In Technologies for Homeland
Security (HST), 2013 IEEE International Conference on.
IEEE, 2013.

[9] J. Xu, P. Guo, M. Zhao, R. F. Erbacher, M. Zhu, and P. Liu.
Comparing different moving target defense techniques. In
Proceedings of the First ACM Workshop on Moving Target
Defense, pages 97–107. ACM, 2014.

8

	Introduction
	Motivation
	Our approach
	Contributions

	Modeling the Enterprise-Web
	Recommendation Engine
	Simulation Framework
	Experiment and Results
	Impact on recommendation on resilience
	Effect of user priority on the recommendation

	Related Work
	Discussion and Future Work
	Acknowledgments
	References

