
DEMO: Action Recommendation for Cyber Resilience

Luke Rodriguez, Darren Curtis
Sutanay Choudhury, Kiri Oler,

Peter Nordquist
Pacific Northwest National Laboratory
firstname.lastname@pnnl.gov

Pin-Yu Chen
University of Michigan Ann

Arbor
pinyu@umich.edu

Indrajit Ray
Colorado State University

indrajit@cs.colostate.edu

ABSTRACT
We demonstrate an unifying graph-based model for representing
the infrastructure, behavior and missions of an enterprise. We in-
troduce an algorithm for recommending resilience establishing ac-
tions based on dynamic updates to the models and show its effec-
tiveness both through software simulation as well as live demon-
stration inside a cloud testbed. Our demonstrate will illustrate the
effectiveness of the algorithm for preserving latency based quality
of service (QoS).

Categories and Subject Descriptors
H.1.m [Information Systems]: Models and Principles

Keywords
cyber security, cyber resilience, recommendation engine

1. INTRODUCTION
Resilience is defined as the ability of an organization to continue

to function, even though it is in a degraded manner, in the face of
impediments that affect the proper operation of some of its com-
ponents. Impediments can be randomly occurring failures of soft-
ware services or hardware systems in an enterprise, or it may be
unavailability of services or systems as the consequence of a cyber
attack. A cyber enterprise is an elaborate web of applications, soft-
ware, storage and networking hardware with complex dependen-
cies among them. Although their building blocks may have been
designed to be robust against failures, it is not easy to answer if
the enterprise-web as a whole is resilient. Therefore, developing a
unifying framework for performing what-if analysis is a necessary
first step towards quantification of organizational resilience.

1.1 Motivation
We use a fictional small e-commerce company named VISR as

our running example (Figure 1). VISR has a CEO, an intern, and
a team of developers and HR professionals. Its physical network
is divided into two subnets. R1-R3 are routers connecting these
subnets. All the users are mapped to the subnet on right, while

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
ACM 978-1-4503-3832-5/15/10.
DOI: http://dx.doi.org/10.1145/2810103.2810104 .

R2

HR 2

HR 1

HR 4

R3R1

CEO

HR 5

Intern Dev 1

Dev 2

Dev 3

HR 3

DB 2

DB 1

DB 3

External

Figure 1: Illustration of the small e-commerce company used
as the motivating use case.

its in-house services are hosted on the left subnet. VISR has three
missions:

1. A sales mission, as online sales is its primary source of rev-
enue. This necessitates guaranteeing the availability of DB2
and the integrity of information inside it.

2. CEO’s strategic mission. CEO’s workstation has intellec-
tual property information whose confidentiality and integrity
needs to be guaranteed.

3. Product development mission which requires availability of
DB1 and DB3 to the Dev group, HR group and the intern.

With the missions being defined, we raise the big question: What
does mean for VISR to be resilient? In a longer version of this
paper [1] we outline a number of common scenarios that compa-
nies such as VISR needs to address on a day to day basis. In our
demonstration, we use our unified model to address these scenarios
and determine what real-life actions such as turning off systems,
disabling users, or selectively blocking communication across ma-
chines might be effective.

1.2 Approach
In order to fully explore the problem, we present a demonstra-

tion on two different environments. First, we present a software
simulator that represents exactly the structure in Figure 1 and in
which all machines and traffic are generated deterministically from
a random seed. This framework allows us to test our scenarios and
methods with a great degree of freedom in order to explore how
our model reacts to various inputs. Doing so provides a great the-
oretical foundation, but more is required to prove that this truly

1620



Figure 2: Demonstration pipeline executing inside Amazon
Web Services.

can integrate into real-world practice. For this reason, we also in-
troduce an Amazon Web Services (AWS) implementation whose
configuration is shown in Figure 2. In this framework we can see
how our theory interacts with practice and test the ability of our
model to recommend real actions in real-time. Using AWS allows
us a great deal of flexibility with how we configure the network, but
still is grounded in reality enough to help us notice and correct any
inaccuracies in our purely theoretical model.

Figure 2 shows the decision making loop in which the recom-
mendation engine operates. This is an automated process that takes
two sets of data as input: a steady-state description of the system
along with a current snapshot. The process then calculates metrics
of the system health such as latency distribution, frequency of au-
thentication requests by processing the data relevant to the model
description. If degradation is detected, the steady-state and current
snapshots are compared in order to make a recommendation of an
action to take that is tailored to restoring that particular metric of
system health.

Given the enterprise at time t, E(t), the occurrence of an imped-
iment ∆, drives the system to an intermediate state E(t + δt). If
Rk(E(t)) > Rk(E(t + δt)), where Rk are metrics derived from
latency or authentication statistics, then a resilient system will need
to act. An actionA is a resiliency preserving action if it transforms
the system state such that Rk(E(t + 1)) > Rk(E(t + δt)), where
E(t + 1) = A(E(t + δt)). We apply this engine to recommend
actions on both the simulated framwork of VISR and the AWS im-
plementation.

2. SOFTWARE SIMULATOR
Experimental evaluation of resilience demands the ability to do

the following: A) simulate steady state behavior, B) simulate im-
pediments, and C) observe the system responding to the impedi-
ments. We did not find any existing data source that contains all
three phases of resilient behavior. Using Denial of Service attacks
(DoS) an example, there are many publicly available network traffic
data sources capturing a DoS attack. However, we could not find
any open dataset that captures the period of attack and the target
system’s subsequent recovery. Observing this dynamism is critical
to quantitative studies of resilience and provides the motivation to
develop and demonstrate a new simulator.

Our simulator supports a host of random graph generation tools,
such as those available in NetworkX in Python. These graphs could
be generated to represent the different components of our system,
and then stitched together to create our model. However, while the

kinds of graphs available to be randomly generated can be repre-
sentative of many kinds of complex systems, we found that they did
not accurately reflect the structure of our cyber networks. There-
fore, we chose to use a pre-determined network configuration to
build the model and execute our testing. We developed a modeling
language that allows us to describe the behavior of our test com-
pany in a configuration file. Next, our code processes the configu-
ration file and generates a series of snapshots of data conforming to
the model. The data output is similar to network traffic flow (also
referred as netflow) datasets captured in real environment.

Figure 3: Latency-request function shown in Eqn. 1

We make a few assumptions about the nature of netflow data.
First, we assume that all requests are roughly the same size, and
thus assign them byte-sizes from a normal distribution with a mean
of 50 and standard deviation of 5. More complicated, however, is
the question of how to model flow duration or latency. Here we use
the latency-request function shown in (1) for simulation.

fj(xj |x∗j ) =

{
ajxj + dj , if xj < x∗j ;
cj · (xj − x∗j )bj + ajxj + dj , if xj ≥ x∗j ,

(1)

For server j, the independent variable xj in the function is the num-
ber of requests currently being processed by the system receiving
the requests. Figure 3 shows a plot of this function. To sim-
plify, we assume that all systems share the same parameters, i.e.,
(aj , bj , cj , dj , x

∗
j ) = (10−4, 4, 10−1, 10−1, 100) for all servers.

Of particular note is the value of x∗j , which determines the point
of inflection at which the quality of service of the system beings to
degrade quickly, as the latency of requests increases steeply. We
add an element of uncertainty by using this equation to determine
the mean of a normal distribution with standard deviation equal to
one tenth of the mean, and draw a duration from this distribution.
This is done by determining how many requests are currently being
processed by a machine at the point at which a new flow is to be
generated to it, and then calculating (1) for this value of xj . To
model the distribution of netflow requests through time, we first
determine which users will be using which applications. Once this
has been determined, 400 requests are put in a queue to be gener-
ated across the 200 seconds of model time with exact times chosen
uniformly at random. The model then steps through these requests
sequentially according to the randomly picked start time, with its
duration assigned as described in the previous paragraph. This pro-
vides the base model on top of which attacks and restorations can
be implemented.

3. AWS IMPLEMENTATION
The implementation of our VISR example on AWS consists of

a collection of dynamically started virtual machines (VM), each of

1621



Figure 4: A screenshot of the demonstration setup. The left window shows the impact of attacks launched on the “CEO” machine
as well as the recommendations produced for a set of VMs. Red indicates that a particular VM should be turned off. Currently we
execute the actions manually fromAWS dashboard (right window).

which have an associated configuration file that describes its be-
havior (Figure 5). Traffic is simulated via simple traffic generators
that mimic HTTP traffic and database server requests, which in turn
allows us to simulate various impediments including denial of ser-
vice, service degradation with overloading, and data deletion on a
network random walk. The system state is then captured via net-
flow, audit logs and sys logs, which are sent to a machine outside
of the target setup for processing and for action recommendation.

Figure 5: A dynamically configured set of VMs inside Amazon
Web Services. Each VM spawns a set of randomized HTTP
and database traffic generators whose behavior is specified in
the testbed configuration.

The attacks used are composed of two varieties: those directed at
disrupting availability and those aimed at impacting data integrity.
The attacks on availability use a combination of simple Unix com-
mands and scripted operations to power off or reboot a selected
node, overload processor resources, and kill a selected process. The
attacks on data integrity work in a similar fashion (i.e. via com-
mand line tools and functionalities) to delete all accessible files,
delete a specified file, delete a specified directory, change a speci-
fied number of characters in a given file, or change a specified num-
ber of characters in all accessible files. The attacks all presume that
the login information for at least one account has been compro-
mised. Using that information ssh connections are attempted for
all known existing nodes and when successful, some combination
of attacks are attempted.

The recommendation engine [1] remains unchanged from the
simulation framework with one exception; we experimentally learnt

Figure 6: Learning the latency-request function from AWS
setup. X and Y-axis represent time and throughput measured
in bytes. Each burst represents an attack, and attacks with in-
creasing intensity are launched sequentially.

the function associated with equation (1) from our AWS testbed.
We systematically overloaded the system by stepping up the attack
volume and measured the latency. Figure 6 shows that throughput
(Y-axis) eventually flattens out as we increase the attack intensity.
Latency is inversely proportional to the throughput, and each attack
provides us with a sample to learn the function.

Figure 4 shows the workflow for the AWS-based demonstration.

4. OPEN SOURCE SOFTWARE
Code used for this demonstration is available as open source at

https://github.com/cyber-resilience/cloud-simulation.

5. ACKNOWLEDGMENTS
Presented research is funded by the Asymmetric Resilient Cyber

Security initiative at Pacific Northwest National Laboratory, which
is operated by Battelle Memorial Institute.

6. REFERENCES
[1] S. Choudhury, P.-Y. Chen, L. Rodriguez, D. Curtis,

P. Nordquist, I. Ray, and K. Oler. Action recommendation for
cyber resilience. In Proceedings of the ACM workshop on
Automated Decision Making for Active Cyber Defense
(SafeConfig 2015), 2015.

1622


	Introduction
	Motivation
	Approach

	Software Simulator
	AWS Implementation
	Open Source Software
	Acknowledgments
	References



