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ABSTRACT

Large scale data fusion of multiple datasets can often provide insights
that individual datasets cannot. However, when these datasets reside
in different data centers and cannot be collocated due to technical,
administrative, or policy barriers, a unique set of problems arise that
hamper querying and data fusion. To address these problems, a sys-
tem and architecture named Parasol is presented that enables feder-
ated queries over graph databases residing in multiple clouds. Para-
sol’s design is flexible and requires only minimal assumptions for
client clouds. Query optimization techniques are also described that
are compatible with Parasol’s lightweight architecture. Experiments
on a prototype implementation of Parasol indicate its suitability for
cross-cloud federated graph queries.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—distributed databases,
query processing

General Terms

Algorithms, Design, Performance
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1. INTRODUCTION

Oftentimes, answering the most interesting questions about data
at scale requires fusing data present in multiple datasets. Here, we
focus on graph data, since graphs have a number of properties that
facilitate data fusion, such as having easily extensible schemas and
being able to represent many disparate types of data in graph form.
Graphs also provide a natural means of expressing queries on data.
Such a query might involve searching for local structures within a
large graph—i.e., a subgraph query. This is also known as the sub-
graph isomorphism problem, which is known to be computationally
and data intensive. The challenge is exacerbated in the context of data
fusion, when parts of the query structure reside in different datasets.
It is this last challenge that we address in this work.

Querying, analyzing, and fusing data at scale generally requires
the use of large data clouds residing in data centers. However, when
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the datasets of interest exist in different clouds, possibly owned by
different organizations, this affords multiple challenges. Ideally, all
the datasets would be moved to a single cloud, but this may not be
technically feasible. Data centers may be physically distant or rely
on different cloud technologies. Likewise, administrative costs may
be prohibitive for supporting such complex architectures. Finally,
there may be policy issues acting as barriers to data collocation and
integration, such as privacy or data sharing concerns.

With this work, we hope to call attention to the above challenges,
and address some of the technical aspects. To this end, we present
Parasol, a system and architecture for performing federated graph
querying across multiple clouds. Our approach in designing Para-
sol was to be flexible by assuming minimal control over client clouds
in the cross-cloud framework, and minimal knowledge of the data
present in each cloud. For a cloud to participate, it implements a
simple client interface, requiring the streaming of partial results for
a small portion of the query. Parasol’s central coordinator process,
implemented using the Hadoop framework and the NoSQL Accu-
mulo backend database, then gathers all results and merges them to
form answers to the query. In this way, clouds maintain a large de-
gree of independence from other client clouds and from Parasol it-
self. One caveat with a generic architecture like that of Parasol is
that it limits the possibilities for using some types of query optimiza-
tion. But, as we will show, even with such minimal assumptions,
it is still possible to perform some query optimization and achieve
reasonable performance, as indicated by our experiments on a pro-
totype implementation of Parasol. We believe that Parasol’s generic
approach to federated graph queries is a promising first step toward
scalable cross-cloud querying.

Parasol is related to previous work in federated databases and dis-
tributed querying, which have been a topic of research for many
years. Traditional query optimization techniques, such as the Magic
Sets algorithm [2] and others (e.g., [4, 12, 15]) have been developed
for distributed query optimization and execution. An example of
a recent distributed query algorithm approach is Horton [14]. One
of its key design features is its graph partitioning scheme and use
of memory to increase performance. In a similar vein, Sun et al.
[16] describe a subgraph matching algorithm for very large graphs,
in which they leverage a novel indexing scheme and make use of a
shared distributed memory store. PowerGraph [5] is a more general
graph computation framework tuned for power law graphs. Our work
is also related to RDF triple stores for the Semantic Web. There has
been recent focus on scalable querying of such RDF stores, using
query languages such as SPARQL [6, 8], query cost-estimation tech-
niques [13], and indexing schemes [3]. Finally, although we do not
address it in this work, schema matching [11] may be required for
successful data fusion of disparate datasets. All these approaches,
and many others, rely on having tight control over data distribution,
cluster topology, and other elements. In contrast, for our work, we
make minimal assumptions about the clouds being queried.

We continue with reviews of Parasol’s architecture (Section 2), is-
sues in query optimization (Section 3), experiments to test Parasol’s
effectiveness (Section 4), and conclude with lessons learned and ideas
for future work (Section 5).
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Figure 1: Parasol’s architecture. A central coordinator process man-
ages query execution over multiple client clouds.

2. ARCHITECTURE

Parasol’s architecture is illustrated in Figure 1. The architecture is
defined in terms of two lightweight processes: a coordinator process
running in a coordinator cloud, and multiple client processes running
in client clouds. Users interact with the coordinator by sending it
graph queries. The coordinator then decomposes each query into ap-
propriate subqueries, performs query optimization to devise a query
plan (represented as a SJ-tree in Figure 1—see Section 3.1), and del-
egates subquery execution to client processes as appropriate. The
clients execute the subqueries, returning their partial results to the
coordinator, which then merges them to produce final answers that
are returned to the originating user. The coordinator is implemented
using Apache Hadoop, and uses the Accumulo NoSQL database for
temporary storage of partial results. Merging is implemented as a se-
quence of MapReduce jobs, each of which merges two sets of partial
results. The SJ-tree structure determines the job sequence.

Importantly, client processes assume no particular infrastructure
for the client clouds. Instead, they only provide the logic to commu-
nicate with the coordinator, and a minimal API that the client clouds
are responsible for implementing, which is a fairly standard practice
in data integration. The API includes methods for computing an-
swers to individual subqueries, which is the minimal functionality for
a working federated graph query system. Also included are optional
methods that enable query optimization (see Section 3 for details).
While using this approach involves creating a new implementation
for each new data source, and updating the implementation if the data
source changes, the significant advantage is that each implementation
can take advantage of site-specific information to speed queries (e.g.,
specialized indexes, MapReduce integration, etc.) which will be crit-
ical at cloud scales. Also, we do not assume a priori knowledge of
the data within individual client clouds. If a data schema could be
provided, additional execution and merging optimizations could be
implemented using that knowledge (e.g., ignoring a subquery that
not pertain to any information stored in a client cloud), at the cost of
having to categorize and coordinate data descriptions across clouds.

To illustrate the workings of our architecture, we provide an ex-
ample of end-to-end query execution, using Figure 3a as an example
query Q. Q. contains four variables and a total of five components,
each of which represents a relationship between nodes. (For this dis-
cussion, we ignore constraints on node types.) First, the coordinator
decomposes Q. into its five components, SQ1—SQs. The coordinator
then performs query optimization, thereby ordering the join opera-
tions needed to construct final answers. Details of query optimiza-
tion are provided in Section 3. Next, the coordinator sends SQ1—-SQs
to each client cloud, and collects the corresponding sets of match-
ing partial results, P1—P5. We will refer to sets of partial results as
k-partials, where k is the number of components satisfied by results
in the set. Since P1—P5 have one matching component, we call these
I-partials. In Figure 1, one such 1-partial is [SQ1: A], indicating that
the “A” edge in the data graph matches SQ); .

After the coordinator has collected all 1-partials from the clients,
it proceeds by iteratively merging these into higher order partials,
merging those whose variables are consistent. Visually, this can be
understood as joining edges in the query that share nodes. For exam-
ple, the 1-partials [SQ1: A] and [SQ2: E] may be merged to form the
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2-partial [SQ1: A, SQ2: E] as long as their shared variable (“P”’) maps
to the same data node. After creating all consistent combinations, the
original partials are deleted. The coordinator continues to merge par-
tials until reaching a final set of k-partials, where & is the number of
query components. These solutions are returned to the user.

3. QUERY OPTIMIZATION

In this section, we discuss Parasol’s generic framework for query
optimization. As mentioned before, Parasol was designed with flexi-
bility in mind, making minimal assumptions about each client cloud’s
architecture and capabilities, which provides for easier cloud integra-
tion. This genericity extends to Parasol’s query optimization design.
Parasol’s coordinator asks each client cloud for statistics related to
execution of a particular query. The client clouds can but are not re-
quired to provide such statistics in return, and Parasol will use what-
ever information is returned. Of course, better statistics will result
in a better query plan. We have created a limited implementation of
query optimization for our Parasol prototype, described below; how-
ever, future improvements are planned (see Section 5).

To ground our discussion, we return to the query of Figure 3a.
The coordinator receives sets of 1-partials of five types (SQ1—-SQs)
from the clouds, and merges the partials that share a common node.
Formally, given two graphs G1 = (Vi1, E1) and G2 = (Va, E2), we
define the join operation G1 X G2 = (V1 U Vs, E1UE5). Applied to
the subgraphs of Figure 3a, for example, SQ; shares a common node
with SQs (“P”) and SQ4 (“F”). Given that SQs and SQ4 also share a
common node (“L”), we can reach a 3-partial corresponding to [SQ1,
SQs, SQ4] following any of three different join orders: (SQ1 X SQs)
X SQ4, (SQ1 X SQ4) X SQg, and (SQ3 X SQ4) X SQ1.

Unless a unique join order is established, we will repeatedly pro-
duce the same output following different join orders. This brings us
to the well known join order selection problem [10], which asks for
a join order that minimizes the number of k-partials created in the
intermediate stages of query processing. Unfortunately, typical cost
models used in relational database optimizers rely on indexing statis-
tics or scanning the data, and many of these models are less readily
applicable to cloud-scale graph databases. Many of the prominent
solutions to subgraph isomorphism (e.g., [19]) rely on indexing the
neighborhood of individual vertices for structural and semantic fea-
tures. Typically, these algorithms explore a k-neighborhood of each
vertex (k is often set to 2). However, the cost of indexing becomes
prohibitive as the number of vertices approaches billions [16].

Instead, our current work is restricted to using a simple greedy
heuristic for join order determination inspired by work in relational
databases: left-deep joins. In a relational context, this heuristic calls
for using a new base table as input to each subsequent join operation,
rather than the results of intermediate joins. The term comes from
the resulting join plan when viewed as a tree (see Section 3.1). For
our work, by analogy, this means using at least one set of 1-partials
as input to each join. Using this heuristic was motivated by an ex-
tensive survey of the literature on optimal join order determination in
relational databases (e.g., [7, 9, 18]). A key conclusion of the survey
states that left-deep join plans are among the best performing heuris-
tics. As alternatives, the above mentioned studies point to a large
body of research using techniques such as dynamic programming and
genetic algorithms to find the optimal join order. Approaches based
on minimum spanning trees or approximate vertex cover can also pro-
vide initial paths forward. Nonetheless, finding the lowest cost join
order or using a cost-driven join order determination remains a diffi-
cult problem in graph databases, and we adopt a simpler approach.

3.1 SJ-Tree

We express our query plan as a Subgraph Join tree (SJ-tree), which
defines the order in which partial results for a query graph ) will be
joined. Figure 2 is an SJ-tree for the query in Figure 3a. An SJ-tree
T for @ is a binary tree comprised of the node set Nr, where each
n € Nr corresponds to a subgraph of (). The subgraph correspond-
ing to the root of 7" is isomorphic to ), and the subgraph correspond-
ing to any n € Np of T is isomorphic to the output of joining the
subgraphs corresponding to n’s children. We use a binary tree struc-



Figure 2: A sample SJ-tree for the query in Figure 3a.

ture, rather than a k-ary tree, for the sake of simplicity and to avoid
the combinatorial cost of joining matches from multiple children.
Thus, query planning amounts to constructing an SJ-tree for the
given query ). Each leaf of the SJ-tree represents a subgraph that
we will request from individual clouds to perform subgraph isomor-
phism, the results of which will consist of 1-partials in our setup.
Internal nodes of the SJ-tree represent subgraphs that result from the
joining of subgraphs returned by the subgraph isomorphism opera-
tions. The SJ-tree will be built greedily from the bottom up, with the
most selective primitives being added first, leveraging the left-deep
heuristic by joining a new set of 1-partials at each step. This is re-
flected in the SJ-tree in Figure 2. Also, note that the SJ-tree is not
used for data indexing, but rather for query planning. Of course, pro-
ducing accurate selectivity estimates for use in SJ-tree construction
may require indexes, but this is left to each client cloud’s discretion.

3.2 SJ-Tree Construction

We introduce an algorithm for SJ-tree construction, BUILD-SJ-
TREE (Algorithm 1). The algorithm assumes the availability of fre-
quency information of small subgraphs termed primitives, such as
single edges, 2-edge paths, or triangles [1, 17], which can be effi-
ciently queried from the data graph GG. For each primitive gys, we
also assume availability of a selectivity estimate for gas; higher se-
lectivity implies use of gas will keep the number of intermediate k-
partials small. The client clouds in our prototype implementation of
Parasol provide single edge primitives, and the selectivity of each gar
is computed as 1/n(gar, G), where n(gar, G) is the number of oc-
currences of gas in GG. More sophisticated selectivity measures can
be used, but clouds will vary as to what estimation capabilities they
have. For our proof-of-concept, a simple count suffices.

Inputs to Algorithm 1 are the query graph @ and a set of primi-
tives M, sorted by descending selectivity. Our goal is to decompose
Q into a collection of (possibly repeated) subgraphs chosen from M,
which will in turn define the SJ-tree and the join ordering. The al-
gorithm begins by initializing the output SJ-tree 7" as a single node
with a subgraph of ) that matches M 1], the most selective primitive,
which is then removed from @) (lines 1-2). The algorithm iterates by
removing portions of ) and adding them to the final SJ-tree 7" in a
bottom-up manner, until ) is empty (lines 3-9). In each iteration, we
loop over the primitives (lines 4—7), and for each primitive gy we at-
tempt to find a subgraph gs.;, of @ that is isomorphic to gas (line 5).
If we succeed, and further, gs,p shares a vertex (i.e., overlaps) with
a subgraph in 7" (line 6) then we break out of the for loop, build the
next 7" as a node with the current 7" and g, as children, and remove
gsub from @ (lines 8-9). At termination, we have an SJ-tree which
will serve as our query plan.

4. EXPERIMENTS

In this section, we describe some preliminary experiments for test-
ing Parasol’s efficacy on cross-cloud federated graph queries. All ex-
periments were performed on two clouds. The first cloud contained
three virtual machines, each with 4 Opteron 6172 CPUs at 2.1GHz
and with 8G RAM. The second cloud had five compute nodes, each
with 16 Xeon E5620 CPUs at 2.40GHz and 48G RAM. This config-
uration demonstrates the utility of our framework for querying across
clouds with variable configurations.

Algorithm 1 BUILD-SJ-TREE(Q, M)

1: T+ FIND(M[1],Q)

2: Q<+ Q\T

3: while |Q| > 0do

4: for all gar € M do

5: gsub < FINDISOMORPHIC(gnr, Q)

6: if gsup # ) A SHARESVERTEX(gsup, T') then
7: break

8: T (T‘7 gsub)

9: Q — Q \ Gsub

10: return 7’
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Figure 3: Queries used in our experiments. Red and blue correspond
to data present in LMDB and BaseKB, respectively.

4.1 Datasets

We chose two datasets with mostly distinct and some overlapping
information: the Linked Movie Database (LMDB)' and BaseKBZ.
LMDB is a semantic database based on the Internet Movie Database,
and contains information related to films, actors, directors, charac-
ters, etc. BaseKB is a linked database extracted from structured in-
formation present in Wikipedia. Persons and locations are shared by
both datasets in a consistent way, enabling cross-dataset querying.
We created subsets for our experiments, including only persons from
the datasets who acted in at least 10 films, directed at least 5 films, or
were associated with a location. Similarly, only characters associated
with one of the above persons were included. The LMDB subset con-
tained about 203k nodes and 820k edges, while the BaseKB subset
had about 56k nodes and 230k edges. As we will show, these subsets
contain enough variety to be able to test relatively complex queries.

4.2 Results

We designed two queries for our experiments, shown in Figure 3.
Edge colors indicate the source dataset: red for LMDB, blue for
BaseKB. The queries were designed to test different query complexi-
ties, and involving the different data types present in our datasets. Q1
asks for a person P who directed a film F' and also attended school
S in the same location L as they were born. Q2 asks for a director D
with a net worth greater than $1M who directed a film F', and an actor
A who played character C' in F' and was born in the same location
L as the director. Together, these queries demonstrate the relatively
complex questions able to be answered with Parasol’s design.

We executed our queries on our clusters and collected several met-
rics for each query. Table 1 summarizes our results. First, we note
that although execution time was not a focus of our initial efforts,
and despite the complexity and sizes of our datasets, each query fin-
ished in a reasonable time, indicating the practicality of our approach.
Next, examining the numbers of 1-partials generated, all match a
fairly large fraction of our datasets, which provides challenging use

"http://linkedmdb.org/
http://basekb.com/



Table 1: Query results.

Q Q2
LMDB 1-partials 40.5K 257K
BaseKB 1-partials 50.4K 62.9K
Merge comparisons 8.32B 2.17B
Intermediate partials 385K 344K
Answers 55 1

Running time 02:35:23  01:32:06
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Figure 4: Number of intermediate k-partials for each merge iteration
during execution of Q.

cases for our queries. In contrast to the 1-partial counts, the number
of merge comparisons—how many pairs of partials were compared
to see if they could merge—varied widely between queries, and it
seemed that this dominated the overall execution time. Interestingly,
the simpler query Q; required almost four times as many merge com-
parisons as the more complex Q2. The number of intermediate par-
tials generated during all the query executions was comparable.

We examined in more detail the number of k-partials during each
partial merge iteration during the execution of Q;. Results are shown
in Figure 4. Prior to merging, the total number of partials was almost
100K, which steadily increased with each merge iteration. Interest-
ingly, the total number of partials decreased at step 2. This can be
explained as a favorable merge ordering decided by our prototype
implementation of Parasol’s query optimizer, and indicates the utility
of query optimization in cross-cloud graph queries.

5. CONCLUSION AND FUTURE WORK

We have shown that a flexible architecture such as that of Para-
sol has promise to support effective cross-cloud graph querying. We
are currently exploring additional improvements. First, Parasol could
take advantage of additional optimization techniques (see Section 3)
were some of its assumptions to be relaxed. For example, if clouds
could report statistics related to partial results—e.g., number of re-
sults for each subquery component, distribution of node ids over
query variables, etc.—these statistics could be used by the coordi-
nator to inform the join order of partial results. Another assumption
which could be relaxed is to allow client clouds to optionally merge
partial results in place prior to its communication with the coordina-
tor, reducing network traffic and resource contention. We also plan to
further explore the benefits and drawbacks to our SJ-tree approach,
and compare it with other query optimization techniques. While the
difficulty of data fusion increases with data size and complexity, ar-
chitectures such as that of Parasol can effectively address the need for
cross-cloud federated querying.
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