
...

SCALING SEMANTIC GRAPH
DATABASES IN SIZE AND

PERFORMANCE
...

GEMS IS A FULL SOFTWARE SYSTEM THAT IMPLEMENTS A LARGE-SCALE, SEMANTIC

GRAPH DATABASE ON COMMODITY CLUSTERS. ITS FRAMEWORK COMPRISES A SPARQL-

TO-Cþþ COMPILER, A LIBRARY OF DISTRIBUTED DATA STRUCTURES, AND A CUSTOM

MULTITHREADED RUNTIME LIBRARY. THE AUTHORS EVALUATED THEIR SOFTWARE STACK

ON THE BERLIN SPARQL BENCHMARK WITH DATASETS OF UP TO 10 BILLION GRAPH

EDGES, DEMONSTRATING SCALING IN DATASET SIZE AND PERFORMANCE AS THEY ADDED

CLUSTER NODES.

......Many fields require organization,
management, and analysis of massive am-
ounts of data. Such fields include social-
network analysis, financial-risk management,
threat detection in complex network systems,
and medical and biomedical databases. These
are all examples of big data analytics, in which
dataset sizes increase exponentially. These
application fields pose operational challenges
not only in terms of sheer size but also in
time to solution, because quickly answering
queries is essential to obtaining market advan-
tages, avoiding critical security issues, or pre-
venting life-threatening health problems.

Semantic graph databases seem to be a
promising solution for storing, managing,
and querying the large and heterogeneous
datasets of these application fields. Such
datasets present an abundance of relations
among many elements. Semantic graph
databases organize the data in the form of

subject-predicate-object triples following
the Resource Description Framework (RDF)
data model. A set of triples naturally repre-
sents a labeled, directed multigraph. An ana-
lyst can query semantic graph databases
through languages such as SPARQL, in
which the fundamental query operation is
graph matching. This differs from conven-
tional relational databases that employ
schema-specific tables to store data and per-
form select and conventional join operations
when executing queries. With relational
approaches, graph-oriented queries on large
datasets can quickly become unmanageable
in both space and time, owing to the large
sizes of intermediate results created when
conventional joins are performed.

Graphs are memory-efficient data struc-
tures for storing data that is heterogeneous or
not rigidly structured. Graph methods based
on edge traversal are inherently parallel

Alessandro Morari

Vito Giovanni Castellana

Pacific Northwest National

Laboratory

Oreste Villa

Nvidia Research

Antonino Tumeo

Jesse Weaver

David Haglin

Sutanay Choudhury

John Feo

Pacific Northwest National

Laboratory

...

16 Published by the IEEE Computer Society 0272-1732/14/$31.00�c 2014 IEEE

because the system can potentially generate a
task for each (single or group of) vertex or
edge to be traversed. Modern commodity
clusters—composed of nodes with increas-
ingly higher core counts, larger main mem-
ory, and faster network interconnections—
are an interesting target platform for in-
memory crawling of big graphs, potentially
enabling scaling in size by adding more nodes
(so-called data scaling1) while maintaining
constant throughput. However, graph-based
methods are irregular: they exhibit poor

spatial and temporal locality, perform fine-
grained data accesses, usually present high
synchronization intensity, and have datasets
with high data skew, which can lead to severe
load imbalance. These characteristics make
the execution of graph-exploration algo-
rithms on commodity clusters challenging.
In fact, their processors implement deep and
complex cache hierarchies optimized for
locality and regular computation, and their
networks reach peak bandwidth only with
large, batched data transfers. However, the

..

Related Work in Graph Databases
Currently, many commercial and open source SPARQL engines are

available. We can distinguish between purpose-built databases for

the storage and retrieval of triples (triple stores), and solutions that

try to map triple stores on top of existing commercial databases,

usually relational SQL-based systems. However, obtaining feature-

complete SPARQL-to-SQL translation is difficult, and could introduce

performance penalties. Translating SPARQL to SQL implies the use of

relational algebra to perform optimizations and the use of classical

relational operators (such as conventional joins and selects) to exe-

cute the query.

By translating SPARQL to graph pattern-matching operations,

GEMS reduces the overhead for intermediate data structures and can

exploit optimizations that look at the execution plan (that is, the exe-

cution order) from a graph perspective.

SPARQL engines can be further distinguished between solutions

that process queries in memory and solutions that store data on disks

and perform swapping. Jena (with the ARQ SPARQL engine [http://

jena.sourceforge.net/ARQ]), Sesame (www.openrdf.org), and Redland

(also called librdf [http://librdf.org]) are all example of RDF libraries

that natively implement in-memory RDF storage and support integra-

tion with some disk-based, SQL back ends. OpenLink Virtuoso (http://

virtuoso.openlinksw.com) implements an RDF/SPARQL layer on top of

its SQL-based column store, for which multinode cluster support is

available. GEMS adopts in-memory processing, storing all data struc-

tures in RAM. In-memory processing potentially allows increasing the

dataset size while maintaining constant query throughput by adding

more cluster nodes.

Some approaches leverage MapReduce infrastructures for RDF-

encoded databases. Shard is a triple store built on top of Hadoop,1

whereas YARS2 is a bulk-synchronous, distributed, query-answering

system.2 Both Shard and YARS2 exploit hash partitioning to distribute

triples across nodes. These approaches work well for simple index

lookups, but they also present high communication overheads for

moving data through the network with more complex queries, and

they introduce load-balancing issues in the presence of data skew.

More general graph libraries—such as Pregel,3 Giraph (http://

incubator.apache.org/giraph), and GraphLab (http://graphlab.org)—

can also be exploited to explore semantic databases, once the source

data have been converted into a graph. However, they require signifi-

cant additions to work in a database environment, and they still rely

on bulk-synchronous, parallel models that do not perform well for

large and complex queries. Our system relies on a custom runtime

that provides specific features to support exploration of a semantic

database through graph-based methods.

Urika is a commercial shared memory system from YarcData

(www.yarcdata.com/Products) targeted at big data analytics. Urika

exploits custom nodes with purpose-built multithreaded processors

(barrel processors with up to 128 threads and a very simple cache)

derived from the Cray XMT. Besides multithreading, which allows tol-

erating latencies for accessing data on remote nodes, the system has

hardware support for a scrambled global address space and fine-

grained synchronization. These features allow more-efficient execu-

tion of irregular applications, such as graph exploration. On top of this

hardware, YarcData interfaces with the Jena framework to provide a

front-end API. SGEM, instead, exploits clusters built with commodity

hardware that are cheaper to acquire and maintain, and which can

evolve more rapidly than custom hardware.

References
1. K. Rohloff and R.E. Schantz, “High-Performance, Massively

Scalable Distributed Systems using the MapReduce Soft-

ware Framework: The SHARD Triple-Store,” Proc. Program-

ming Support Innovations for Emerging Distributed

Applications, 2010, pp. 4:1-4:5.

2. A. Harth et al., “YARS2: A Federated Repository for Querying

Graph Structured Data from the Web,” Proc. 6th Int’l Seman-

tic Web and 2nd Asian Semantic Web Conf., 2007, pp. 211-

224.

3. G. Malewicz et al., “Pregel: A System for Large-Scale Graph

Processing,” Proc. ACM Int’l Conf. Management of Data,

2010, pp. 135-146.

...

JULY/AUGUST 2014 17

parallelism of graph-based methods can be
exploited to realize multithreaded execution
models that create and manage an oversub-
scription of tasks to cores, allowing for tolera-
tion of data access latency, rather than
reducing it through locality.

In this article, we present GEMS (Graph
Engine for Multithreaded Systems), a full
software stack that implements a semantic
graph database for big data analytics on com-
modity clusters. Currently available graph
databases usually implement mechanisms to
store, retrieve, and query triples on top of
conventional relational databases, or still
resort to relational approaches for some com-
ponents (see the “Related Work in Graph
Databases” sidebar for more information). In
contrast, GEMS implements a semantic
graph database primarily with graph-based
algorithms at all the levels of the stack.
GEMS includes a compiler that converts
SPARQL queries to data-parallel graph pat-
tern-matching operations in Cþþ; a library
of parallel algorithms and related, distributed
data structures; and a custom, multithreaded
runtime layer for commodity clusters.

In designing SGEM, we were able to
work around the limitations of commodity
with irregular applications (that is, large-scale
graph crawling) by combining lightweight

software multithreading with a partitioned
global address space and network messages
aggregation, enabling scaling in size and per-
formance of graph databases.

GEMS overview
Figure 1 provides an overview of the GEMS

architecture. GEMS comprises a SPARQL-
to-Cþþ compiler, a Semantic Graph library
(SGLib) of supporting data structures such
as the graph and dictionary with the related
parallel API to access them, and a Global
Memory and Threading (GMT) runtime
layer.

The top layer consists of the compilation
phases. The compiler transforms the input
SPARQL queries into intermediate represen-
tations that are analyzed for optimization
opportunities. Potential optimization oppor-
tunities are discovered at multiple levels.
Depending on the datasets’ statistics, certain
query clauses can be moved, enabling early
pruning of the search. Then, the optimized
intermediate representation is converted into
Cþþ code that contains calls to the SGLib
API. SGLib APIs completely hide the low-
level APIs of GMT, exposing to the compiler
a lean, simple, pseudosequential shared-mem-
ory programming model. SGLib manages the

SPARQL compiler

SPARQL

Hashing
Set
Multiset
Graph API

Multithreaded graph layer: GMT

HL-IR LL-IR

SG Lib
Query
C++

SG library

ExecutionDictionary

Graph

Lexer/
parser Lower

Code
emitter

Figure 1. Graph Engine for Multithreaded Systems (GEMS) architecture. GEMS comprises a

SPARQL-to-Cþþ compiler, a Semantic Graph library (SGLib) of supporting data structures,

and a Global Memory and Threading (GMT) runtime layer.

..

BIG DATA

..

18 IEEE MICRO

graph database and query execution, and gen-
erates the graph database and the related dic-
tionary by ingesting the triples. Triples can,
for example, be RDF triples stored in the
N-Triples format, a common serialization for-
mat for the RDF.

Our system’s approach to extracting infor-
mation from the semantic graph database is
to solve a structural-graph pattern-matching
problem. GEMS employs a variation of Ull-
mann’s subgraph isomorphism algorithm.2

The GMT layer provides the key features
that enable management of the data struc-
tures and load balancing across the cluster’s
nodes. GMT is codesigned with the upper
layers of the graph database engine to better
support the irregularity of graph pattern-
matching operations. GMT provides a parti-
tioned global address space (PGAS) data
model, hiding the complexity of the distrib-
uted memory system. GMT exposes to
SGLib an API that permits allocating, access-
ing, and freeing data in the global address
space. Unlike other PGAS libraries, GMT
employs a control model typical of shared-
memory systems: fork-join parallel constructs
that generate thousands of lightweight tasks.
These lightweight tasks allow hiding the
latency for accessing data on remote cluster
nodes; they are switched in and out of pro-
cessor cores while communication proceeds.
Finally, GMT aggregates operations before
communicating to other nodes, increasing
network bandwidth utilization.

Figure 2 shows an example RDF dataset
and a related query in different stages of com-
pilation. Figure 2a shows the dataset in the
N-Triples format, and Figure 2b shows the
corresponding graph representation. Figure
2c shows the SPARQL description of the
query, Figure 2d illustrates its graph pattern,
and Figure 2e shows the pseudocode gener-
ated by the compiler and executed by GMT
through SGLib.

GEMS has minimal system-level library
requirements: besides Pthreads, it needs only
a library supporting the message passing inter-
face (MPI) for the GMT communication
layer, and Python for some compiler phases
and for glue scripts. Currently, GEMS also
requires x86-compatible processors because
GMT employs optimized context-switching
routines. However, specific context-switching

routines can be developed for other architec-
tures to avoid this requirement.

GMT: Addressing commodity
clusters’ limitations

The GMTruntime system enables GEMS
to scale in size and performance on commod-
ity clusters. GMT is built on three main pil-
lars: global address space, latency tolerance
through fine-grained software multithread-
ing, and remote-data-access aggregation (also
called coalescing).

The global address space (through
PGAS) relieves the other layers of GEMS
from partitioning the data structures and
orchestrating communication. Message agg-
regation maximizes network bandwidth uti-
lization, despite the small data accesses
typical of graph methods on shared-memory
systems. Fine-grained multithreading allows
hiding the latency for remote data transfers,
as well as the additional latency for aggrega-
tion, by exploiting the inherent parallelism
of graph algorithms.

Figure 3a shows the high-level design of
GMT. Each node executes an instance of
GMT. Different instances communicate
through commands, which describe data, syn-
chronization, and thread management opera-
tions. GMT is a parallel runtime library with
three types of specialized threads. The main
idea is to exploit modern processor cores to
support the runtime library’s functionalities.
The specialized threads are

� the worker, which executes applica-
tion code in the form of lightweight
user tasks and generates commands
directed to other nodes;

� the helper, which manages global
address space and synchronization,
and handles incoming commands
from other nodes; and

� the communication server, the end-
point for the network, which man-
ages all incoming and outgoing
communication at the node level in
the form of network messages that
contain the commands.

The specialized threads are implemented
as Posix threads, each pinned to a core. The
communication server employs an MPI to

...

JULY/AUGUST 2014 19

send and receive messages to and from other
nodes. There are multiple helpers and work-
ers per node (usually an equal number,
although this is one of the tunable parameters
that depend on the target machine) and a sin-
gle communication server.

SGLib contains data structures that are
implemented using shared arrays in GMT’s
global address space. Among them are the
graph data structure and the terms dictionary.
The dictionary is used to map vertex and
edge labels (actually RDF terms) to unique
integer identifiers. This lets us compress the
graph representation in memory as well as
perform label or term comparisons far more
efficiently. Dictionary encoding is a common
practice in database systems.

The SPARQL-to-Cþþ compiler is de-
signed to operate on a shared-memory system
and does not need any information about the
physical partitioning of the database. How-
ever, as is common in PGAS libraries, GMT
also exposes locality information, allowing
for reducing data movements whenever pos-
sible. Because graph-exploration algorithms
mostly have loops that run through edge or
vertex lists, GMT provides a parallel loop
construct that maps loop iterations to light-
weight tasks. GMT supports task generation
from nested loops and allows specifying the
number of iterations of a loop mapped to a
task. GMTalso allows controlling code local-
ity, enabling the runtime to spawn (or move)
tasks on preselected nodes rather than

has_name = get_label("has_name")
of_type = get_label("of_type")
owns = get_label("owns")
suv = get_label("SUV")
forall e1 in edges(*, of_type, suv)

 ?car1 = source_node(e1)
 forall e2 in edges(*, owns, ?car1)

?person = source_node(e2)
forall e3 in edges(?person, owns, *)

?car2 = target_node(e3)
if (?car1 != ?car2)

forall e4 in edges(?person,has_name,*)
?name = target_node(e4)
tuples.add(<?name>)

distinct(tuples)

(e)

SEDAN SUV

PERSON1

CAR1 JOHN

has_name

ADDR1

has_address owns

PERSON2

CAR2 CAR3

owns

BOB

has_name owns

ADDR2

has_address

PERSON3

owns

MARY

has_namehas_address

of_type

1997

year of_type

2012

year of_type

2001

year

?person

?car1

owns

?car2

owns ?name

has_name

?car1!=?car2

SUV

of_type

PERSON1 has_name JOHN .
. PERSON1 has_address ADDR1

PERSON1 owns CAR1 .

CAR1 year 1997 .
CAR1 of_type SEDAN .

.PERSON2 has_name BOB

PERSON2 owns CAR2 .
PERSON2 has_address ADDR2 .

.CAR2 of_type SEDAN
CAR2 year 2012 .
PERSON2 owns CAR3 .

.CAR3 of_type SUV
CAR3 year 2001 .
PERSON3 has_name MARY .

.PERSON3 has_address ADDR2
PERSON3 owns CAR3 .

SELECT DISTINCT ?name
WHERE {
 ?person owns ?car1 .
 ?person owns ?car2 .
 ?person has_name ?name .
 ?car1 of_type SUV .
 FILTER(?car1 != ?car2)
}

(a) (c)

(b)

(d)

Figure 2. Example Resource Description Framework (RDF) dataset and related query, “return the names of all persons

owning at least two cars, of which at least one is an SUV.” Dataset in simplified N-Triples format (a), RDF graph (b), simplified

SPARQL query (c), pattern graph (d), and pseudocode (e).

..

BIG DATA

..

20 IEEE MICRO

moving data. SGLib routines exploit these
features to better manage SGLib’s internal
data structures. SGLib routines access data
via put and get communication primitives,
moving them into local space for manipula-
tion and writing them back to the global
space. The communication primitives are
available with both blocking and nonblock-
ing semantics. GMT also provides atomic
operations, such as atomic addition and test-
and-set, on data allocated in the global
address space. SGLib exploits these opera-
tions to protect parallel operations on the
graph datasets and to implement global syn-
chronization constructs for database manage-
ment and querying.

Aggregation
Graph-exploration algorithms present

fine-grained data accesses: for-loops effec-
tively run through edges and/or vertices rep-
resented by pointers, and each pointer may
point to a location in a completely unrelated
memory area. With partitioned datasets on
distributed memory systems, expert pro-
grammers must implement by hand optimi-
zations to aggregate requests and reduce the
overhead due to small network transactions.
GMT hides these complexities from the
other layers of GEMS by implementing auto-
matic message aggregation.

GMT collects commands directed toward
the same destination nodes in aggregation
queues. GMT copies commands and their
related data (such as values requested from
the global address space with a get) into
aggregation buffers, and sends them in bulk.
Commands are then unpacked and executed
at the destination node. At the node level,
GMT employs high-throughput, nonblock-
ing aggregation queues, which support con-
current access from multiple workers and
helpers. Accessing these queues for every gen-
erated command would have a very high
cost. Therefore, GMT employs a two-level
aggregation mechanism: workers (or helpers)
initially collect commands in local command
blocks, and then they insert command blocks
into the aggregation queues.

Figure 3b describes the aggregation mech-
anism. When aggregation starts, workers (or
helpers) request a preallocated command
block from the command block pool (step
1). Command blocks are reused for perform-
ance reasons. Commands generated during
program execution are collected into the local
command block (step 2). A command block
is pushed into aggregation queues when it is
full (Condition A), or when it has been wait-
ing longer than a predetermined time interval
(Condition B). Condition A is true when all
the available entries are occupied with

Application

Comm.
server

Worker

Helper

node

node N
network

node 1

cluster

Global address
space (virtual)

GMT API
commands

commands

Network
(MPI)

GMTcommands

Aggregation queue

Aggregation buffer

Channel queue

Itb queue

create task
push

task queue

pop

worker

TASK_RUNNING

TASK_WAITING

parse
command

push

Helper MPI recv

pop

500 iterations
499 iterations

Command block pool
7

432

1

5

2

8
9

5

10

6 3

2

11

4

9

10

1

8

7
6

Worker

commands push

A C
Command block

Command block
KLNO memcpy

ACD

memcpy

push pop and
aggregate

push
pop

push
KL NO

replies

memory

memcpy

MPI send

popdDdCdA

Comm.
server

dA dC dDHelper

D

(a) (b) (c)

Comm.
server

Figure 3. GMT runtime library. GMT architecture (a), aggregation (b), and fine-grained multithreading (c). The figure shows

the general architecture of the runtime library with its specialized threads and the workflow for the two techniques (data

aggregation and multithreading) that improve the behavior of commodity clusters with irregular workloads. (Comm. server:

communication server; MPI: message passing interface.)

...

JULY/AUGUST 2014 21

commands, or when the equivalent size in
bytes of the commands (including any
attached data) reaches the size of the aggrega-
tion buffer. Condition B allows setting a con-
figurable upper bound for the latency added
by aggregation. After pushing a command
block, when a worker or helper finds that the
aggregation queue has sufficient data to fill
an aggregation buffer, it starts popping com-
mand blocks from the aggregation queue and
copying them with the related data into an
aggregation buffer (steps 4, 5, and 6). Aggre-
gation buffers also are preallocated and
recycled to save memory space and eliminate
allocation overhead. After the copy, com-
mand blocks are returned to the command
block pool (step 7). When the aggregation
buffer is full, the worker (or helper) pushes it
into a channel queue (step 8). Channel
queues are high-throughput, single-producer,
single-consumer queues that workers and
helpers use to exchange data with the com-
munication server. If the communication
server finds a new aggregation buffer in one
of the channel queues, it pops it (step 9) and
performs a nonblocking MPI send (step 10).
The aggregation buffer is then returned into
the pool of free aggregation buffers.

The size of the aggregation buffers and
the time intervals for pushing out aggregated
data are configurable parameters that depend
on the interconnection of the cluster on
which GEMS resides. Buffers should be suffi-
ciently large to maximize network through-
put, whereas time intervals should not
increase the latency over the values maskable
through multithreading.

Multithreading
Concurrency, through fine-grained soft-

ware multithreading, allows GMT to tolerate
both the latency for accessing data on remote
nodes and the added latency for aggregating
communication operations. Each worker exe-
cutes a set of GMT tasks. The worker switches
among tasks’ contexts every time it generates a
blocking command that requires a remote
memory operation. The task that generated
the command executes again only when the
command itself completes (that is, it gets a
reply back from the remote node). In case of
nonblocking commands, the task continues
executing until it encounters a wait primitive.

GMT implements custom context-
switching primitives that avoid some of the
lengthy operations (for example, saving and
restoring the signal mask) performed by the
standard libc context-switching routines.

Figure 3c schematically shows how GMT
executes a task. A node receives a message con-
taining a spawn command (step 1) generated
by a worker on a remote node when encoun-
tering a parallel construct. The communica-
tion server passes the buffer containing the
command to a helper that parses the buffer
and executes the command (step 2). The
helper then creates an iteration block (itb). The
itb is a data structure that contains the func-
tion to execute, the function’s arguments, and
the number of tasks that will execute the func-
tion. This way of representing a set of tasks
avoids the cost of creating a large number of
function arguments and sending them over
the network. Next, the helper pushes the itera-
tion block into the itb queue (step 3). Then,
an idle worker pops an itb from the itb queue
(step 5), decreases the counter of t, and pushes
it back into the queue (step 6). The worker
creates t tasks (step 6) and pushes them into its
private task queue (step 7).

At this point, the idle worker can pop a
task from its task queue (step 8). If the task is
executable (that is, all its remote operations
have been completed), the worker restores
the task’s context and executes it (step 9).
Otherwise, it pushes the task back into the
task queue. If the task contains a blocking
remote request, the task enters a waiting state
(step 10) and is reinserted into the task queue
for future execution (step 11).

This mechanism provides load balancing
at the node level because each worker gets new
tasks from the itb queue as soon as that work-
er’s task queue is empty. At the cluster level,
GMT evenly splits tasks across nodes when it
encounters a parallel for-loop construct.

Experimental results
We evaluated GEMS on the Olympus

supercomputer at Pacific Northwest National
Laboratory’s Institutional Computing Center.
Olympus is a cluster of 604 nodes intercon-
nected through a QDR Infiniband switch
with 648 ports (with a theoretical peak of 4
Gbytes/second [GBps]). Each of Olympus’

..

BIG DATA

..

22 IEEE MICRO

nodes features two AMD Opteron 6272 pro-
cessors at 2.1 GHz and 64 Gbytes of double-
data-rate 3 (DDR3) memory clocked at 1,600
MHz. Each socket hosts eight processor mod-
ules (two integer cores, one floating-point core
per module) on two different dies, for a total
of 32 integer cores per node.

We configured the GEMS stack with 15
workers, 15 helpers, and one communication
server per node. Each worker hosts up to
1,024 lightweight tasks. We measured the
MPI bandwidth of Olympus with the Ohio
State University Micro-Benchmarks 3.9 (http://
mvapich.cse.ohio-state.edu/benchmarks), reac-
hing a peak (around 2.8 GBps) with mes-
sages of at least 64 Kbytes. Therefore, we set
the aggregation buffer size at 64 Kbytes.
Each communication channel hosts up to
four buffers. There are two channels per
helper, and one channel per worker.

We initially present some synthetic bench-
marks of the runtime, highlighting the
combined effects of multithreading and
aggregation to maximize network bandwidth
utilization. We then show experimental
results of the whole GEMS system on a well-
established benchmark, the Berlin SPARQL
Benchmark (BSBM).3

Synthetic benchmarks
Figure 4 shows the transfer rates reached

by GMTwith small messages (from 8 to 128
bytes) when the number of tasks were in-
creased. Every task executes 4,096 blocking-put

operations. Figure 4a shows the bandwidth
between two nodes, and Figure 4b shows
the bandwidth among 128 nodes. The fig-
ures show how increasing the concurrency
increases the transfer rates, because there are
more messages that GMT can aggregate. For
example, across two nodes (Figure 4a) with
1,024 tasks each, puts of 8 bytes reach a
bandwidth of 8.55 Mbytes/second (MBps).
With 15,360 tasks, GMT reaches 72.48
MBps. When we increase message sizes to
128 bytes, 15,360 tasks provide almost 1
GBps. For reference, 32 MPI processes with
128-byte messages reach only 72.26 MBps.
With more destination nodes, the probabil-
ity of aggregating enough data to fill a buffer
for a specific remote node decreases.
Although there is a slight degradation, Figure
4b shows that GMT is still very effective. For
example, 15,360 tasks with 16-byte messages
reach 139.78 MBps, whereas 32 MPI proc-
esses provide only up to 9.63 MBps.

GEMS results
The BSBM defines a set of SPARQL

queries and datasets to evaluate the perform-
ance of semantic graph databases and systems
that map the RDF into other kinds of storage
systems. Berlin datasets are based on an
e-commerce use case with millions to billions
of commercial transactions, involving many
product types, producers, vendors, offers,
and reviews. We run queries 1 through 6 of
the Business Intelligence use case on datasets

1,000

M
b

yt
es

/s
ec

on
d

M
b

yt
es

/s
ec

on
d

100

10

1

1,000

100

10

1
1,024 3,072 5,120 7,168

Tasks per node Tasks per node
9,216 11,264 13,312 15,360 1,024 3,072 5,120 7,168 9,216 11,264 13,312 15,360

8B
16B
32B
64B
128B

(a) (b)

8B
16B
32B
64B
128B

Figure 4. Synthetic benchmarks showing aggregation and multithreading effects. Transfer rates of put operations between

two nodes (a) and among 128 nodes (one to all) (b) while concurrency is increased.

...

JULY/AUGUST 2014 23

with 100 million (100M), 1 billion (1B), and
10 billion (10B) triples.

Tables 1, 2, and 3 show the build time of
the database and the average execution time
(while running 100 queries concurrently) of
the queries on 100M, 1B, and 10B triples,
respectively, while we progressively increased
the number of cluster nodes. Sizes of the input
files are 21 Gbytes (100M), 206 Gbytes (1B),
and 2 Tbytes (10B). In all cases, the build time
scales with the number of nodes.

Considering all three tables together, we can
appreciate how GEMS scales in dataset sizes
when new nodes are added to the cluster, and
how it can exploit the additional parallelism
available. With 100M triples, Q1 and Q3 scale
for all experiments up to 16 nodes. Increasing
the number of nodes for the other queries,
instead, provides constant or slightly worse exe-
cution times. These execution times are very
short (under 0.5 seconds), and the small data-
sets do not provide sufficient data parallelism.

These queries have only two graph walks with
two-level nesting. Even with larger datasets,
GEMS can already exploit all the available par-
allelism with a limited number of nodes. Fur-
thermore, the database has the same overall size
but is partitioned on more nodes, so the com-
munication increases, slightly reducing the
performance.

With 1B triples, we see similar behavior.
In this case, however, Q1 stops scaling at 32
nodes. With 64 nodes, GEMS can execute
queries on 10B triples. Q3 still scales in per-
formance up to 128 nodes, whereas the other
queries, except Q1, approximately maintain
stable performance. Q1 experiences the high-
est decrease in performance when 128 nodes
are used because its tasks present higher com-
munication intensity than the other queries,
and GEMS has already exploited all the avail-
able parallelism with 64 nodes.

This data confirms that GEMS can main-
tain constant throughput when running sets

Table 1. Time (in seconds) to build the database and execute Berlin SPARQL

Benchmark (BSBM) queries 1 to 6 with 100 million triples. Execution times

for queries are the average of 100 concurrent runs.

Phase/Query 2 nodes 4 nodes 8 nodes 16 nodes

Build 199.00 106.99 59.85 33.42

Q1 1.83 1.12 0.67 0.40

Q2 0.07 0.07 0.07 0.05

Q3 4.07 2.73 1.17 0.65

Q4 0.13 0.13 0.14 0.15

Q5 0.07 0.07 0.07 0.11

Q6 0.01 0.02 0.02 0.03

Table 2. Time (in seconds) to build the database and execute BSBM queries 1 to 6

with 1 billion triples. Execution times for queries are the average of 100

concurrent runs.

Phase/Query 8 nodes 16 nodes 32 nodes 64 nodes

Build 628.87 350.47 200.54 136.69

Q1 5.65 3.09 1.93 2.32

Q2 0.30 0.34 0.23 0.35

Q3 12.79 6.88 4.50 2.76

Q4 0.31 0.25 0.22 0.27

Q5 0.11 0.12 0.14 0.18

Q6 0.02 0.03 0.04 0.05

..

BIG DATA

..

24 IEEE MICRO

of mixed queries in parallel—that is, in typi-
cal database usage.

O ur work on GEMS demonstrates that
it is possible to implement a graph

database on a commodity cluster that can
scale in size while maintaining constant query
throughput as new cluster nodes are added.
GEMS shows that the typical issues that limit
commodity clusters with graph processing (a
typical irregular application) can be addressed
using appropriate software techniques such
as lightweight software multithreading and
data aggregation. GEMS is a significant step
toward the implementation of a fast, scalable,
and cost-effective system for large scale graph
databases.

We will continue to improve the stack by
adding support to dynamic graphs and
graphs that have multiple labels per edges
(thick edges), by evolving the compiler to
support the full SPARQL semantics and to
perform more advanced query-planning
optimizations. Furthermore, we will explore
the support of lower-level communication
libraries than MPI that directly map on the
hardware (such as Infiniband verbs or the
Cray custom primitives) and other emerging
architectures for high-performance clusters in
our runtime (such as accelerators and many-
core processors), evaluating the power and
performance tradeoffs with respect to com-
modity x86-based systems. MICRO

Acknowledgments
This work was supported by the Center for

Adaptive Super Computing Software (CASS)
at the US Department of Energy’s Pacific
Northwest National Laboratory (PNNL). The
Pacific Northwest National Laboratory is
operated by Battelle Memorial Institute under
Contract DE-ACO6-76RL01830. A portion
of the research was performed using PNNL
Institutional Computing.

..
References
1. J. Weaver, “A Scalability Metric for Parallel

Computations on Large, Growing Datasets

(Like the Web),” Proc. Joint Workshop Scal-

able and High-Performance Semantic Web

Systems, 2012, pp. 91-96.

2. J.R. Ullmann, “An Algorithm for Subgraph

Isomorphism,” J. ACM, vol. 23, no. 1, 1976,

pp. 31-42.

3. C. Bizer and A. Schultz, “The Berlin

SPARQL Benchmark,” Int’l J. Semantic

Web and Information Systems, vol. 5, no. 2,

2009, pp. 1-24.

Alessandro Morari is a research scientist in
the Data Intensive Scientific Computing
group at the Pacific Northwest National
Laboratory. His research interests include
big data analytics, large-scale runtime sys-
tems, system software for high-performance
computing, and performance modeling.
Morari has a PhD in computer science from
Universitat Politècnica de Catalunya, Spain.
He is a member of IEEE and the ACM.

Vito Giovanni Castellana is a research
associate in the High Performance Comput-
ing Group at the Pacific Northwest National
Laboratory. His research interests include
embedded-system design and electronic
design automation, code transformation,
compilation, and optimization. Castellana
has a PhD in computer science and engi-
neering from Politecnico di Milano.

Oreste Villa is a senior research scientist in
the architecture group at Nvidia Research.
His research interests include computer
architecture and simulation, accelerators

Table 3. Time (in seconds) to build the database and execute

BSBM queries 1 to 6 with 10 billion triples. Execution times for

queries are the average of 100 concurrent runs.

Phase/Query 64 nodes 128 nodes

Build 1066.27 806.55

Q1 27.14 39.78

Q2 1.48 1.91

Q3 24.27 18.32

Q4 2.33 2.91

Q5 2.13 2.82

Q6 0.40 0.54

...

JULY/AUGUST 2014 25

for scientific computing, and irregular ap-
plications. Villa has a PhD in computer sci-
ence and engineering from Politecnico di
Milano.

Antonino Tumeo is a senior research scien-
tist in the High Performance Computing
Group at the Pacific Northwest National
Laboratory. His research interests include
simulation and modeling of computer
architectures (high performance and
embedded), hardware-software codesign,
FPGA prototyping, and GPGPU comput-
ing. Tumeo has a PhD in computer science
and engineering from Politecnico di Milano.
He is a member of IEEE and the ACM.

Jesse Weaver is a research scientist in the
Data Intensive Scientific Computing group
at the Pacific Northwest National Laboratory.
His research interests include distributed
graph and RDF databases, parallel reasoning

systems, the Semantic Web, and linked data.
Weaver has a PhD in computer science from
Rensselaer Polytechnic Institute.

David Haglin is a senior research scientist
in the Data Intensive Scientific Computing
group at the Pacific Northwest National
Laboratory. His research interests include
data mining, big data, and graph algo-
rithms. Haglin has a PhD in computer and
information sciences from the University of
Minnesota. He is a senior member of IEEE.

Sutanay Choudhury is a member of the
Scientific Data Management group in the
Computational Science and Mathematics
Division at the Pacific Northwest National
Laboratory. His research focuses on design-
ing algorithms for modeling, mining, and
searching streaming graphs to enable novel
applications in social media, online news
monitoring, and cyber security. Choudhury
has a PhD in computer science from Wash-
ington State University. He is a member of
IEEE and the ACM.

John Feo is the principal investigator of the
High Performance Data Analytic Project
and a deputy division director at the Pacific
Northwest National Laboratory. His
research interests include parallel comput-
ing, parallel application development, graph
databases, functional languages, and per-
formance studies. Feo has a PhD in com-
puter science from the University of Texas at
Austin. He is a member of the ACM.

Direct questions and comments about this
article to Antonino Tumeo, Pacific North-
west National Laboratory, 902 Battelle Blvd
MSIN J4-30, Richland, WA 99352;
antonino.tumeo@pnnl.gov.

..

BIG DATA

..

26 IEEE MICRO

