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ABSTRACT

We consider cyber traffic analysis (TA) as a challenge prob-
lem for research in graph database systems. TA involves ob-
serving and analyzing connections between clients, servers,
hosts, and actors within IP networks, over time, to detect
suspicious patterns. Towards that end, NetFlow (or more
generically, IPFLOW) data are available from routers and
servers which summarize coherent groups of IP packets flow-
ing through the network. The ability to cast IPFLOW data
as a massive graph and query it interactively is potentially
transformative for cybersecurity, but issues of scale and data
complexity pose challenges for current technology. In this
paper, we outline requirements and opportunities for graph-
structured IPFLOW analytics based on our experience with
real IPFLOW databases. We describe real use cases from
the security domain, cast them as graph patterns, show
how to express them in two graph-oriented query languages
(SPARQL and Datalog), and use these examples to motivate
a new class of “hybrid” graph-relational systems.
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1. INTRODUCTION
It is widely recognized that cyber technologies represent

one of, if not the most, significant challenges to national
security today. Cybersecurity analysts must increasingly
manipulate massive-scale, high-resolution flows to identify,
categorize, and mitigate attacks involving networks span-
ning institutional and national boundaries. A flow in this

∗Corresponding author: 1100 Dexter Ave. N., Suite 400,
Seattle, WA 98109, 206-552-0351.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the First International Workshop on Graph Data Manage-

ment Experience and Systems (GRADES 2013) June 23, 2013, New York,
NY, USA
Copyright 2013 ACM 978-1-4503-2188-4 ...$15.00.

context is an aggregation of packet-level communication be-
tween two cyber systems over some network protocol be-
tween specific ports for a period of time. Flow data can
be acquired at all levels of the Internet Protocol (IP) com-
munications hierarchy, starting with bits and packets: Each
packet passing through a router or switch is inspected for a
set of attributes and determined to be unique or associated
with packets already seen. All packets with the same source,
destination, ports and protocol are grouped into a flow and
packets and bytes are aggregated accordingly. We find that
this level of aggregation at the flow level is distinctly valu-
able and complementary to the more detailed packet level
for exposing and reasoning about the communication graph
patterns with which analysts work.

Analysis of these graph-structured flows represents an ex-
cellent use case for advancing database research, for sev-
eral reasons: 1) the problem is ubiquitous in enterprise and
government computing allowing solutions to have enormous
direct impact; 2) representative large-scale datasets suit-
able for reproducible research are available; 3) datasets of
nearly arbitrary size are easy to collect; 4) the complexity of
these datasets motivates new architectures and algorithms;
5) the analysis tasks are much more complex than the sim-
ple graph-oriented benchmarks and use cases proposed in
the literature (e.g., counting triangles or computing the de-
gree distribution); and 6) there is a rich literature to draw
on from the networking and computer security community
involving IPFlow data and algorithms.

While there have been a number of past attempts at IPFLOW
graph analytics, including by us [10], they still remain lim-
ited in scale or complexity [3, 4, 5, 6, 8], and frequently
do not consider flow direction or other attributes [2, 9] (al-
though Tegeler et al. [12] do consider temporal information).

2. IPFLOW GRAPHS
Table 1 shows a typical data schema for IPFLOW records.1

In addition to source and destination IP address and port,
the number of packets and bytes comprising the flow, start
and stop time, transport protocol (e.g. TCP vs. UDP), and
other flags are included. This schema is naturally repre-

1We are limiting our work to IPv4 but consider support for
IPv6 within reach of our techniques.



Field Type Description
EXADDR BIGINT IP address of recording device
DPKTS BIGINT Destination packet count
DOCTETS BIGINT Destination byte count
STIME BIGINT Flow start time
FTIME BIGINT Flow end time
SRCADDR BIGINT Source IP address
DSTADDR BIGINT Destination IP address
SRCPORT INTEGER Source port
DSTPORT INTEGER Destination port
PROT INTEGER Transport protocol
TOS INTEGER Type of service
TCP_Flags INTEGER Header flags

Table 1: Spec for input data set.

sented as a directed graph (sample edge shown in Fig. 1),
but with additional complexities, including:

• A combinatorial structure on node IDs, each a vector
of the four “octets” of the IP address, together with
the port ID.

• # packets and # bytes as quantitative edge attributes.

• An interval attribute for start and stop times.

• A categorical attribute for transport protocol.

100.110.120.130:80

200.210.220.230:8080

P=5, B=3K, t=[2,5], TCP

Figure 1: Link in an IPFLOW graph: nodes are IP:Port,
P=# packets, B=# bytes, t=time interval. Transport pro-
tocol also shown.

Under this model, IPFLOW graphs can be considered hy-
brid structures involving both graph components and re-
lational components, potentially motivating a new class of
systems. Our use cases below exercise the hybrid aspects
of these datasets to detect events of interest. In very large
databases, the ability to handle (potentially recursive) con-
nectivity queries combined with conventional relational data
processing is seeing increasing attention, for example in the
Graphcube effort [13].

3. DATA SETS
Here we review the characteristics of IPFLOW data sets

modeled as graphs and their utility as a “challenge problem”
for graph databases, including scale and acquisition issues.
We argue that appropriate datasets of any size are readily
available for research purposes either by direct acquisition
or by reuse of publicly available sources. We describe some
specific, prominent public datasets and characterize their
graph-theoretic properties.

Organizations like PNNL collect IPFLOW data for multi-
ple purposes and levels. IPFLOW data are readily obtained

Average Stdev
Flows/day (M) 613.2 242.5
Packets/day (B) 27.6 11.9
Packets/flow 178.7 702.6
Bytes/day (T) 24.1 11.1
Bytes/flow (K) 153.1 596.4

Table 2: Flow collection statistics for a typical PNNL net-
work monitor.

by system and network administrators, and individual users,
both on individual network nodes, network appliances, at or-
ganizational boundaries, central ISP routers, and at other
points in a network architecture. For example, if the “cap-
ture device” is placed at the perimeter of the network (typ-
ically a firewall), data will be collected on communications
from the outside in, and from the inside out. That configu-
ration will not provide data on communications to and from
internal devices that may be valuable as well. In that case,
having IPFLOW collected on internal routers and switches
becomes important. These different implementations may
produce vastly different amounts of data.

The size and the dynamic properties of these IPFlow graphs
pose major challenges from a graph data management per-
spective. A typical data collection rate at one sensor can
range into tens of megabits per second (see e.g. Fig. 2), im-
plying a data volume of hundreds of gigabytes per day from
one sensor. The corresponding count for number of packet-
level records ranges into hundreds of millions.

Because of these factors, and also the ability to adjust
both sampling rates and sampling windows, gathered data
sets and corresponding IPFLOW graphs can be of highly
variable sizes, with giga- and tera-scale datasets being quite
common, especially considering the amount of near-continuous
background communication between networked devices. As
a result, an enterprise setting may produce hundreds of bil-
lions of IPFLOW records per day. Although the volume
of information tends to exhibit a periodicity due to typical
working hours, the continuous background communication
remains even in the absence of human activity, and unusual
events may occur at any time.

Table 2 shows collection statistics for a typical network
monitor at PNNL aggregated daily. The moderately high
standard deviation around the 613.2M collected flows/day
reflects the weekday/weekend work schedule. It is easy to
see that IPFLOW graphs of most any desirable size from
the mega- to the tera-scale can be generated with ease.

IPFLOW data sets are typically sensitive and held closely
by particular organizations and enterprises; they are difficult
to obtain for research purposes. Some research organiza-
tions have industry or government partners who are willing
to share network data for the purposes of research, but that
data is unable to be shared outside of the project context
and therefore hinders scientific reproducibility. Realizing
this challenge, there have been several efforts to provide rel-
evant network communication and cyber attack data for the
purposes of research, for example the Cooperative Associa-
tion for Internet Data Analysis (CAIDA)2 and the Protected
Repository for the Defense of Infrastructure Against Cyber

2http://www.caida.org



Threats (PREDICT)3 effort by the Department of Home-
land Securities’ Science and Technology Directorate.

The datasets from CAIDA can be put into two broad cate-
gories, 1) active measurement of macroscopic internet topol-
ogy and 2) passive measurements of internet traffic data.
The former involves actively probing IP-level paths to ob-
served IP addresses, performing alias resolution to resolve
which IP addresses are associated with the same physical
host, and finally yield router level internet graphs. The
latter involves sampling the traffic flowing through inter-
net service provider (ISP) routers and observing the traffic
destined to specific internet address spaces.

These data are especially appealing from a graph database
perspective. As various events in the real world are reflected
in the network traffic activity, interactive, scalable, ad hoc
query is a necessity to detect a change in the properties of
a vertex or emergence of a pattern as the situation unfolds.

As an example, Fig. 3 shows the study by King and Dain-
otti [7] where they discovered the changes to the internet in-
frastructure in Egypt as the political events unfolded. Mod-
eling the IPFlow data as a graph and querying for changes
in the macroscopic properties such as degree distribution, or
the in or out degree of important vertices in the graph, can
be the first step in performing such analysis.

Figure 2: Data rate (bits and packets per second) observed
by the UCSD Network Telescope.

Consider a dataset collected from CAIDA4 containing 56
million packet level records collected from a bi-directional
internet backbone link located at an Equinox5 datacenter in
San Jose, CA, USA. The data collection monitor dropped
less than 1% of packets in a test environment. We refer the
reader to the CAIDA website for exhaustive description of
the data collection methodology. Fig. 4 show a rendering of
a small portion of this dataset following an aggregation to
netflow level and subsequent conversion to a graph format.

While background rates can be estimated, the highly vary-
ing nature of the data poses critical graph database design
questions. The number of packets and flows varies sharply
depending on the events taking place, for example attack
events. As an example, a prominent news source such as
www.cnn.com can receive an extra-ordinary amount of traf-

3predict.org
4www.caida.org/data/passive/passive-2012-dataset.xml
5www.equinox.com

Figure 3: Visualization of the IPFlow data collected during
the Egypt internet blackout [7].

fic both due to a major news release or a DoS attack [8].
The CAIDA DDoS attack 20076 provides approximately one
hour of anonymized traffic traces from a DDoS attack, which
attempts to the block access to the targeted server by over-
loading the server with queries. The total size of this dataset
is 21 GB and Fig. 5 shows the rise in the data volume and
number of edges in the graph as the attack evolves.

Figure 4: Internet backbone traffic graph, 10K records.

4. USE CASES
There are a number of widely known cyber attack sce-

narios which are ammenable to treatment in quantitatively
labeled graphs like our IPFLOW graph (see also [3]). Each
scenario corresponds to one or more queries appropriate for
a database system. We describe representative scenarios,
then dwelling in more depth on two in particular: Exfiltra-
tion and Hierarchical Botnet.

6www.caida.org/data/passive/ddos-20070804-dataset.xml



Figure 5: Statistics on graph data volume as collected from
a DDoS attack dataset.

In all cases we highlight the hybrid graph queries involved,
combining graph connectivity information with quantitative
attribute aggregation. Below for convenience we combine #
packets and # bytes in a flow to a single size attribute S.

• Watering Hole: In this scenario, a cyber adversary suc-
cessfully compromises an intermediate target (e.g. the
web site of a local newspaper) that is routinely ac-
cessed by computers associated with the adversary’s
primary target. The adversary puts malicious soft-
ware on the intermediate target which, when accessed
by targeted computers, causes them to directly com-
municate with a third machine completely controlled
by the adversary. Given flow records at the perimeter
of the primary target, defenders can look for a graph
pattern of activity where individual accesses to a pop-
ular web site are suddenly followed by accesses to an
external service—particularly an external service that
has been rarely or never accessed before. Fig. 6 shows
this attack as a hybrid graph pattern. Over the time
interval [1, 100] baseline bidirectional flow traffic is es-
tablished between a bait machine and multiple targets.
Then at a subsequent time, and much narrower win-
dow [110, 120], all the target machines initiate a flow
to a common controller.

...

Bait

Target
1

Target
2

Target
n

Controller

t=[1,100]

t=[110,111]
t=[110,111] t=[110,111]

Figure 6: A watering hole attack graph pattern.

• Botnets For DDOS: Here on the order of a hundred thou-
sand robot machines distributed widely across the In-
ternet suddenly start sending large volumes of network
traffic (either in terms of flow size or number of flows)
to a relatively small number of targets, while com-
municating with a small number of controller hosts.
Fig. 7 shows this attack as a hybrid graph pattern. A
relatively small number k of controllers have relatively

small bidirectional flow patterns with a large number
n of bots, which in turn have very large one-directional
flows with a relatively small number m of targets.

...

Controller
1

Bot
1

Bot
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Bot
n

Controller
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Bot
3

...Target
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Target
2
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m

Bot
4

k << n

m << n
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ij
)large

avg(S
ij
)small

Figure 7: A botnet for DDOS graph pattern.

• Exfiltration (EXFIL): In this attack pattern, an attacker
wishes to transmit a large volume of data from a tar-
get to an Internet host (drop box) under the adver-
sary’s control. The adversary uses a relatively low-
bandwidth control channel to issue commands prior
to a large data flow from a target host to the drop
box. Given flow records at the perimeter of the pri-
mary target, defenders look for a pattern of activity
where an unusually large amount of data is transmit-
ted by a target host that does not generally transmit
large amounts of data to external hosts. Addition-
ally, defenders want to find the low-bandwidth control
channel used by the adversary to initiate the outbound
large data transfer.

Fig. 8 shows this attack as a hybrid graph pattern.
A relatively small number flow between attacker and
target precedes (with time interval t = [−10, 0]) a sub-
sequent (with time interval [1, 3600]) large flow (or ag-
gregate flows) from target to dropbox. This case will
be elaborated below.

Target

Attacker

Dropbox

t=[-10,0]

t=[1,3600]

avg(S
ij
)large

avg(S
ij
)small

Figure 8: An exfiltration graph pattern.

• Hierarchical Botnets (HIERBOT): To hide their identity
and to support larger botnets, the botnet creators and
operators may establish a hierarchy of controllers. Bots
talk to first level controllers, which in turn talk to
second level controllers, and so on. Internet Service
Providers must identify all the controllers (not just the
first level in the hierarchy) in order to disrupt the bot-
net control structure. The most interesting controllers



are the highest in the hierarchy, as they are more likely
to be associated with the people that create and op-
erate the botnet. Fig. 9 shows this attack as a hybrid
graph pattern, showing a tree pattern of controllers ar-
ranged in p levels each with kp sub-controllers per level.
It is basically an elaboration on Botnet for DDOS,
with the crucial property that paths can be of indefi-
nite length, requiring recursive graph pattern finding.
This case will be elaborated below.
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Figure 9: A hierarchical botnet graph pattern.

5. USE CASES CAST AS GRAPH QUERIES
Having framed use case scenarios as patterns in quantified

IPFLOW graphs, we now elaborate on the two cases of EX-
FIL and HIERBOT by showing translation into two graph
query languages: SPARQL and Datalog. These languages
are shown as exemplars of graph query languages. By elab-
orating on these two example use cases and languages, we
demonstrate the power of the graph database ad hoc query
mechanism as tool in support of these cyber use cases.

5.1 SPARQL
The SPARQL suite of standards7 consists of languages

and protocols to query RDF graphs made up of triples (sub-
ject, predicate, object). Triples represent edges in a directed
graph, where the names of the nodes in the graph are the
strings appearing as either subject or object in at least one
of the triples, and the edges are typed by the predicates.
The SPARQL query language is modeled after SQL, with
the SELECT clause requesting graph patterns that might
appear in the larger data graph (perhaps in multiple places
of the graph). There are several open source and commercial
products that operate in the RDF/SPARQL space, includ-
ing Virtuoso, AllegroGraph, uRiKA, Jena/ARQ. We now
consider the use of SPARQL for the Exfiltration use case
and Datalog for the Hierarchical Botnets use case.

The SPARQL query in Figure 10 consists of three compo-
nents: the first for finding the control message, the second
for pulling out the large amount of data from victim to drop-
box within an hour of receiving the control message, and the

7http://www.w3.org/TR/sparql11-overview

SELECT ?control ?target ?dropbox ?xfil WHERE {
# Control Message from C2 to target
?control ?ctrlmsg ?target .
?ctrlmsg :FTIME ?ftime1 .
?ctrlmsg :STIME ?stime1 .
?ctrlmsg :DPKTS ?pkts1 .
?ctrlmsg :DOCTETS ?octets1 .
FILTER (?pkts1 < 3 && ?octets1 < 300)

# xFil occurs within the next hour to ?dropbox
{ SELECT ?target ?dropbox (SUM(?octets) AS ?xfil)
WHERE {

?target ?flow ?dropbox .
?flow :DOCTETS ?octets .
?flow :STIME ?stime .
FILTER (?stime > ?ftime1

&& ?stime - ?ftime1 < 3600)
} GROUP BY ?target ?dropbox

HAVING (SUM(?octets) > 200000)
}

# xFil did NOT happen from target in previous
# hour (target usually does not send lots of
# data to external hosts).
{ SELECT ?target
{ SELECT ?target (SUM(?octets) as ?outRate)

WHERE {
?target ?flow ?dst .
?flow :DOCTETS ?octets .
?flow :STIME ?stime .
FILTER (?stime < ?stime1

&& ?stime1 - ?stime < 3600)
} GROUP BY ?target ?dst

} GROUP BY ?target
HAVING (MAX(?outRate) < 100000)

}
}

Figure 10: SPARQL query for the EXFIL use case.

third for considering the highest outflow of data from the
victim in the previous hour and ensuring that is not very
much. While the check for the previous hour having very
little outflow of data may not be sufficient for a true cyber
query, this example shows a way to formulate a reasonably
complex query in a short and expressive way.

Note that there are several “threshold” constants in the
query that could be tuned to a specific dataset and exfiltra-
tion scenario: the size of the control message < 300 bytes,
the duration of the exfiltration message as 3600 (the number
of seconds in one hour), the size of the total outflow to the
dropbox of ≥ 200,000 bytes, and the size of the largest out-
flow to another host indicating “does not generally transmit
large amounts of data” of ≤ 100,000 bytes.

We also note that the select variables at the outer-level
select clause will show all possible dropbox hosts involved in
a single exfiltration event from one victim.

5.2 Datalog
The Datalog language is a non-turing-complete subset of

Prolog that extends the relational algebra with recursion,
and is strictly more expressive than SPARQL[1].8 A data-
log program is a set of rules, where each rule consists of a

8The relationship between datalog and SPARQL 1.0, which
includes recursive path expressions, is an open problem to
the best of our knowledge.



# syntactic sugar to ignore irrelevant attributes
flow(src,dst,start,end) :-

Ipflow(_,_,_,_,start,end,src,dst,_,_,_,_,_,_)

# count the flows to dst starting in a given window
flowcount(dst, count(src)) :- flow(src,dst,start,end),

4:59 pm < start, start < 5:00 pm

# a DDOS attack is a large number of flows
# to one destination in a short time
DDOS(dst) :- flowcount(dst, number_of_flows),

number_of_flows > 100k

# A bot is any IP participating in an attack
bot(src) :- DDOS(dst), flow(src, dst, start, end)

# a controller is anyone connected to a bot
contro(src) :- flow(src, dst, start, end), bot(dst)
# ...or anyone connected to another controller
contro(src) :- flow(src, dst, start, end), contro(dst)

# master controllers connect to many controllers
master(src) :- flow(src,dst,start,end),

flowcount(dst, number_of_flows),
contro(dst), number_of_flows > 20

Figure 11: Datalog code for HIERBOT.

head and a body. The body of a rule may refer to its head; in
this case, the rule is recursive, although recursion can arise
in other ways: if we induce a dependency graph by con-
structing an edge between the head of a rule and each term
in its body, any cycle in this graph indicates recursion. Dat-
alog has recently enjoyed a resurgence as a natural language
for graph computations [11], thanks to its simplicity, ex-
pressiveness, formal semantics, and affordance of optimized,
parallel evaluation using techniques developed for relational
query processing.

Fig. 11 shows the datalog code for hierarchical botnet,
highlighting the recursive nature of the path query involved.
Some non-standard syntax is used for clarity. The first rule
simply projects out unneeded fields. The second rule counts
the number of flows in a particular time range. The third
and fourth rules define a DDoS attack as any high capac-
ity flow to a particular destination, and identifies those IPs
participating in the attack, respectively. The fifth and sixth
rule recursively defines a controller as any IP that is commu-
nicating with a bot, or anyone that is communicating with a
controller. The final rule identifies controllers that are influ-
encing a large number of other controllers, considering them
to be potential sources of the attack.
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